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Abstract

We consider extrinsic differential geometry on spacelike hypersurfaces in Minkowski pseudo-spheres (hyperbolic space, de
Sitter space and the lightcone). In the previous paper [S. Izumiya, Legendrian dualities and spacelike hypersurfaces in the
lightcone, Preprint] we have shown a basic Legendrian duality theorem between pseudo-spheres. We define the spacelike parallels
by using the basic Legendrian duality theorem. This definition unifies the notions of parallels of spacelike hypersurfaces in
pseudo-spheres. We also define the evolute as the locus of singularities of the spacelike parallels. These notions are investigated
as applications of Lagrangian or Legendrian singularity theory. We consider geometric properties of non-singular spacelike
hypersurfaces corresponding to singularities of spacelike parallels or evolutes.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper we describe some results of the project constructing the extrinsic differential geometry on
submanifolds of Minkowski pseudo-spheres (cf. [12—18]). In [18] we have shown a basic Legendrian duality theorem
between pseudo-spheres in Minkowski space in order to develop an extrinsic differential geometry for spacelike
hypersurfaces in pseudo-spheres. Especially, we have stuck to spacelike hypersurfaces in the lightcone motivated by
the results of Asperti and Dajczer [3] on conformally flat Riemannian manifolds. For a spacelike hypersurface in
the lightcone, we cannot define the normal vector because the metric is degenerate. However, we have defined the
lightlike Gauss image of a spacelike hypersurface in the lightcone as a direct application of the basic duality theorem.
The derivative of the lightcone Gauss image can be interpreted as a linear transformation on the tangent space of
the spacelike hypersurface which is called the lightcone Weingarten map. Therefore we have the lightlike principal
curvatures as the eigenvalues of the lightcone Weingarten map. It follows that we have the lightcone Gauss—Kronecker
curvature of the hypersurface as the product of the lightlike principal curvatures. We can also apply the Legendrian
duality theorem to spacelike hypersurfaces in hyperbolic space or de Sitter space. For hypersurfaces in hyperbolic
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space, we have reconstructed the hyperbolic Gauss—Kronecker curvature in [18] by using the basic Legendrian duality
theorem which was originally introduced in [12].

On the other hand, the notions of parallels and evolutes (focal sets) play important roles in the classical differential
geometry for hypersurfaces in Euclidean space. Basic properties of such singular hypersurfaces were investigated
by many people [2,4,24]. As a consequence, we can interpret that these results on evolutes describe the contact of
hypersurfaces with hyperspheres (i.e., totally umbilic hypersurfaces with non-zero Gauss curvatures). It is called the
“spherical (or round) geometry” of hypersurfaces in Euclidean space.

In [13,14] we have studied the evolutes of hypersurfaces in hyperbolic space and discovered some examples of
hypersurfaces that the evolutes are spilt out of hyperbolic space. Some parts of the evolutes of such examples are
located in de Sitter space. Therefore we have defined the notion of hyperbolic evolutes and de Sitter evolutes of
hypersurfaces in hyperbolic space. In the Euclidean space, it has been known that the evolute of a hypersurface is the
locus of singularities of the parallels of the original hypersurfaces. This means that the corresponding notion of the
parallels for hypersurfaces in hyperbolic space might be also spilt out of hyperbolic space. Under such observation,
we introduce the notion of spacelike parallels and evolutes in Minkowski pseudo-spheres. Here, Minkowski pseudo-
spheres are hyperbolic space, de Sitter space or the lightcone (cf. Section 2). In Section 12 of [18] we remarked that
the corresponding notion of parallels and evolutes of spacelike hypersurfaces in the lightcone have quite different
properties from the parallels and the evolutes in Euclidean space. Especially if we consider a spacelike hypersurface
in the lightcone, the parallels of the spacelike hypersurfaces are never located in the lightcone. Of course the evolute
of the hypersurface are also in the same situation. This fact is quite different from the other hypersurfaces theories.
Minkowski space is originally from the relativity theory in Physics (i.e., Lorentzian geometry in Mathematics). We
refer to the book [23] for general properties of Minkowski space and Lorentzian geometry.

In Section 2 we give a brief review on the previous results on spacelike hypersurfaces in Minkowski pseudo-
spheres. Especially, the basic Legendrian duality theorem in [18] is stated. We also review classification results on
totally umbilic spacelike hypersurfaces in pseudo-spheres. We consider such totally umbilic spacelike hypersurfaces
as “model hypersurfaces”. Spacelike parallels and caustics are defined in Section 3 as an application of the basic
Legendrian duality theorem. By definition we can show that the caustics is the locus of singularities of spacelike
parallels. According to the classification results of the totally umbilic spacelike hypersurfaces in pseudo-spheres, the
evolutes is defined in Section 4. In order to study parallels and evolutes, we introduce timelike height functions and
spacelike height functions in Section 5. By the direct calculation, we can show that the above notions of caustics
and evolutes are the same. In Sections 6 and 7 we study parallels and caustics from the viewpoint of Lagrangian or
Legendrian singularity theory. In Section 8 we study the geometric meaning of both the singularities of parallels and
evolute from the viewpoint of the contact with families of model hypersurfaces (totally umbilic hypersurfaces). We
study generic properties in Section 9. In Section 10 we apply the classification results in [10,28] to the case for n = 3
and draw some pictures.

We shall assume throughout the whole paper that all the maps and manifolds are C°° unless the contrary is explicitly
stated.

2. Basic concepts and notations

In this section we prepare basic notions on Minkowski space and contact geometry. Let R"T! =
{(x0,x1,...,xp)|xi € R, i =0,1,...,n}bean (n + 1)-dimensional vector space. For any vectors x = (xo, ..., X),
¥y = (30, ..., yu) in R"! the pseudo-scalar product of x and y is defined by (x,y) = —xoyo + >_r_; x; ;. The space
(R™1(,)) is called Minkowski (n + 1)-space and denoted by R"*!.

We say that a vector x in R**1 \ {0} is spacelike, lightlike or timelike if (x,x) > 0,= 0 or <O respectively. The
norm of the vector x € R"*! is defined by |lx| = /](x, x)|. Given a vector n € IR'I"H and a real number c, the
hyperplane with pseudo-normal # is given by

HP(n,c) = {x e R (x,n) = c}.

We say that H P (n, c) is a spacelike, timelike or lightlike hyperplane if n is timelike, spacelike or lightlike respectively.
We have the following three kinds of pseudo-spheres in ]R’{H : the hyperbolic n-space is defined by

H"(=1) = fx e BRI (x, x) = —1},
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the de Sitter n-space by
St ={x e R x,x) = 1)
and the (open) lightcone by
LC* = {x e R\ {0}](x, x) = 0}.

We now review some properties of contact manifolds and Legendrian submanifolds. Let N be a (2n + 1)-
dimensional smooth manifold and K be a tangent hyperplane field on N. Locally such a field is defined as the field
of zeros of a 1-form «. The tangent hyperplane field K is non-degenerate if @ A (da)” # 0 at any point of N. We
say that (N, K) is a contact manifold if K is a non-degenerate hyperplane field. In this case K is called a contact
structure and « is a contact form. Let ¢ : N —> N’ be a diffeomorphism between contact manifolds (N, K) and
(N’, K"). We say that ¢ is a contact diffeomorphism if d¢(K) = K’. Two contact manifolds (N, K) and (N’, K')
are contact diffeomorphic if there exists a contact diffeomorphism ¢ : N —> N’. A submanifoldi : L C N of a
contact manifold (N, K) is said to be Legendrian if dim L = n and diy(TxL) C K;() at any x € L. We say that
a smooth fiber bundle 7 : E — M is called a Legendrian fibration if its total space E is furnished with a contact
structure and its fibers are Legendrian submanifolds. Let # : E —> M be a Legendrian fibration. For a Legendrian
submanifoldi : L C E,woi : L —> M is called a Legendrian map. The image of the Legendrian map 7 o is called
a wavefront set of i which is denoted by W(L). For any p € E, it is known that there is a local coordinate system
(X1y-++yXm, P1s+- -, Pm, 2) around p such that

XLy eevs Xy Ply v vy Pmn 2) = (X1, ooy X,y 2)

and the contact structure is given by the 1-form
m
oa=dz — Z pidx;
i=1

(cf. [1], 20.3).
In [18] we have shown the basic duality theorem which is the fundamental tool for the study of spacelike
hypersurfaces in Minkowski pseudo-spheres. We now consider the following four double fibrations:

(1) (@ H"(=1) x §{ D Ay ={(v,w) | (v,w) =0},
d) T : Ay — H'(=1), 712 : Ay — S,
() O11 = (dv, w)[ Ay, 012 = (v, dw)|A;.

(2) (@ H"(=1) x LC* D Ay = {(v,w) | (v,w) = —1},
(b) mp1 : Ay —> H"(=1), 30 : Ay —> LC*,
(©) 621 = (dv, w)[A2, 622 = (v, dw)|A.

(3) (a) LC* x S’f D Ay={w,w) | (v,w) =1},
(b) w31 : A3 —> LC*, 3 : A3 —> ST,
() B31 = (dv, w)| A3, 032 = (v, dw)|As.

4) (@) LC* x LC* D Ay ={(v,w) | (v,w) = =2},
(b) w41 : Ay —> LC*, mgp : Ay —> LC*,
(©) O41 = (dv, w)[ Ay, 012 = (v, dw)|Ay.

Here, ;1 (v, w) = v, min(v, w) = w, (dv, w) = —wodvy + Y_7_, w;dv; and (v, dw) = —vodwo + >_;_; vidw;.
We remark that Ol._ll (0) and Qi_zl (0) define the same tangent hyperplane field over A; which is denoted by K;. The
basic duality theorem is the following theorem:

Theorem 2.1. Under the same notations as the previous paragraph, each (4;, K;) (i = 1,2,3,4) is a contact
manifold and both of m;; (j = 1,2) are Legendrian fibrations. Moreover those contact manifolds are contact
diffeomorphic with each other.
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We do not give the proof of the theorem here. However we need the canonical contact diffeomorphism between A

and A4. We define a smooth mapping
Py RITT  RIFD 5 RIFL x RYH

by é14(v,w) = (v +w, v — w). The converse mapping is given by
vV+w v—w
2 72 '
We can also check that @14(A1) = Ag and &41(Ag) = Ay, so that @14|A; and P41| A4 are diffeomorphism. We can
easily check that @14 and @4 are contact diffeomorphisms.

We now consider differential geometry of hypersurfaces in pseudo-spheres as applications of the basic theorem.
Let

¢41 (V, W) = <

ﬁ]lU—)A]

be a Legendrian embedding and denote that £ (1) = (xh (u), x4 (u)). By using the above contact diffeomorphism, we
have a Legendrian embedding

Ly4:U — Ay
defined by L4(u) = P14 0o L1 (). We denote that L4(u) = (xﬁ(u), x% (1)), so that we have the following relations:

xf () +x% () ) = xb () — xt(u)
2 ’ - 2 )

We now distinguish three cases as follows:

xh(u) =

Case (1) We assume thatx" : U —> H"(—1) is an embedding. In this case xft are the hyperbolic Gauss indicatrices

of x" which are defined in [12]. Nevertheless, we call these the lightcone Gauss image here. We also call x¢ the
de Sitter Gauss image of x. In [12] we showed that the derivatives of xft and x? at ug can be considered as linear
transformations on the tangent space of M = x"(U) at p = x"(ug). We respectively call Si (p) = —dxfb(uo) and
S9(p) = —dx%(ug) the lightcone shape operator and the de Sitter shape operator of M = x"(U) at p = x"(uo).
We denote the eigenvalue of Sft (p) by Kft(p) and the eigenvalue of S(p) by ¢ (p). By the relation x* 4 x¢ = xft,
we have a relation Si (p) = —idr,m £ S4(p) under the identification of U and M through x". Therefore, Si (p) and
$%(p) have the same eigenvectors and we have a relation that Ki (p) = —1+«%p).
We now define the notion of Gauss—Kronecker curvatures of M = x”(U) at p = x" (u¢) as follows:

K f(uo) = det Si( p); The lightcone Gauss—Kronecker curvature,

Ka(up) = det S( p); The de Sitter Gauss—Kronecker curvature.

We remark that Klfk (u) is called the hyperbolic Gauss—Kronecker curvature in [12]. We say that a point ug € U or
p = x"(ug) is an umbilic point if Si(ﬂ) = Ki(p)idrpM. Since the eigenvectors of Si(p) and $¢ (p) are the same,
the above condition is equivalent to the condition S9(p) = k( p)idr,m. We say that M = x"(U) is totally umbilic if
all points on M are umbilic. Here, we consider the following model hypersurfaces in hyperbolic space. We consider
the intersection of H"(—1) with a hyperplane in R *!:

HH(n,c) = HP(n,c)N H"(—1).

We say that HH(n,c) is a hypersphere if n is timelike, a equidistant hypersurface if n is spacelike and a
hyperhorosphere if n is lightlike. Especially the equidistant hypersurface H H (n, 0) is called a hyperplane. In [12] it
has been shown the following proposition.

Proposition 2.2. Suppose that M = x"(U) c H"(—1) is totally umbilic. Then Ki(p) is constant /ci. Under this
condition, we have the following classification:

(1) Suppose that (c£)* + 2«§ # 0.
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(a If (Ki)2 + ZKi > 0, then M is a part of hypersphere

4
—xt -1
HH e, —=—"_|,
V(D2 + 2
where
1
c=— (cix"w) +xL () € H'(—1)

()2 + 218
is a constant timelike vector.
M) If (/{i)2 + 2Ki < 0, then M is a part of an equidistant hypersurface

HH ¢, ———— |,

where

c=—o () +xL W) e ST

V=D =26k

is a constant spacelike vector. In particular, if /{i = —1, then M is a part of hyperplane HH (c, 0), where
c=x1 (u) is a constant spacelike vector.
Q) If (Icf,:)2 + ZKf: = 0, then M is a part of a hyperhorosphere H H (c, —/ci — 1), where c = /cixh (u) + xft (u)isa
constant lightlike vector.
Case (2) We assume thatx? : U —> ST is an embedding. Since £ is a Legendrian embedding, x?isa spacelike
embedding. (i.e., an embedding and x‘uii, (i =1,...,n — 1) are spacelike vectors). We also call xi the lightcone
Gauss image and x" the hyperbolic Gauss image of x?. By exactly the same calculation as the case (1), we can show
that the derivatives of xft and x" at ug can be considered as linear transformations on the tangent space of M = x4(U)
at p = x%(ug). We respectively call Si(p) = —dxft(uo) and S"(p) = —dx?(ug) the lightcone shape operator and
the hyperbolic shape operator of M = xd(U )at p = x4 (up). We denote the eigenvalue of Si (p) by Ki (p) and the
eigenvalue of sh (p) by Kh(p). By the relation Si (p) = sh (p)F idT,,M, Si (p) and sh (p) have the same eigenvectors

and we have a relation that /ci(p) = Kh(p) F 1.
We now define the notion of Gauss—Kronecker curvatures of M = x4(U) at p = x(up) as follows:

K tft (ug) = det Si (p); The lightcone Gauss—Kronecker curvature,

K (ug) = det SZ; The hyperbolic Gauss—Kronecker curvature.

We say that a point ug € U or p = x4 (ug) is an umbilic point if Si(p) = Ki (p)idr,m. Since the eigenvectors of
Si (p) and S"(p) are the same, the above condition is equivalent to the condition Sh(p) = k" (p)i dr,m. We say that

M = x?(U) is totally umbilic if all points on M are umbilic. Here, we consider the following model hypersurfaces in
de Sitter space. We consider the intersection of S7 with a hyperplane in IR'I"H :

HS(n,c)=HP(n,c)N S

We say that H S(n, c¢) is a hyperbolic hyperquadric if n is spacelike, a parabolic hyperquadric if n is lightlike and a
elliptic hyperquadric if n is timelike. We can show the following classification of totally umbilic hypersurfaces in S}
by using exactly the same method as the proof of Proposition 2.2.

Proposition 2.3. Suppose that M = x*(U) C S is totally umbilic. Then Ki (p) is constant /ci. Under this condition,
we have the following classification.
(1) Suppose that (k4)> + 2«cf. # 0.

(a If (Ki)2 + ZKi > 0,then M is a part of the hyperbolic hyperquadric

kb +1

)2 £ 24k

HS |c,
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where

c= ;(Kixd(u) +xft(u)) e st

V()2 £ 2k

is a constant spacelike vector.
M) If (Kji)2 + 2K:Kt < 0, then M is a part of the elliptic hyperquadric

4
+1
HS C, K:t— )
VD)2 F 26k
where
1
c= —ouo(icx¥w) +xL () € H'(~1)

V=) F 2k
is a constant timelike vector.
) If (Kﬁ:)z + 2/<fiE = 0, then M is a part of the parabolic hyperquadric H S(c, Ki + 1), where c = Kixd (u) —i—xft (u)
€ LC* is a constant lightlike vector.

Case (3) We assume that x’i : U —> LC* is a spacelike embedding (i.e., an embedding and (xﬂ)ui, i=1,...,n—1)
are spacelike vectors). We call x"(ug) the hyperbolic normal vector to M = xﬁ(U Yatp = xﬁ (up) and x4 (up) the de
Sitter normal vector to M = xf_(U) at p = xf_ (ug). We call a mapping xt U — LC* the lightcone Gauss image
of M = xﬂ(U). We also respectively call x : U —> H"(—1) the hyperbolic Gauss image and x¢ : U —> S the
de Sitter Gauss image of M = xﬁ(U ). We investigated the extrinsic differential geometry of M = xﬂ(U ) by using
x, x", x? like as the Gauss map of a hypersurface in Euclidean space, in [18]. For the purpose, we have shown that the
derivatives dx® (1), dx" (ug), dx? (ug) can be considered as linear transformations on the tangent space T, M where
p = xﬁ(uo). We respectively call the linear transformations Stp) = —dx (o) : T,M —> T,M the lightcone
shape operator, sh (p) = —dx" (up) : TyM —> T,M the hyperbolic shape operator and Sd(p) = —dx¥(ug) :
T,M — T,M the de Sitter shape operator. We respectively denote the eigenvalues of S¢(p) by «t(p), S"(p) by
«"(p) and §9(p) by x4 (p), which are respectively called the lightcone principal curvature, the hyperbolic principal
curvature and the de Sitter principal curvature of M at p. We might consider that dxﬁ(uo) is the identity mapping
on T, M under the identification between U and M through xﬁ. By the relations among xﬂ, xt, x" x4, the principal
directions of S*( P, sh (p), sd (p) are the common and we have the following relations between the corresponding
principal curvatures:

ki(p)—1 —«t(p) —1
s —«p) =1

d «‘(p)=
and «“(p) >

«"(p) =
We now define the notion of curvatures of M = xﬁ(U yatp = xﬁ(uo) as follows:

K¢(ug) = det st (p); The lightcone Gauss—Kronecker curvature,
Kp(ug) = detS h (p); The hyperbolic Gauss—Kronecker curvature,
Kg(ug) = det N (p); The de Sitter Gauss—Kronecker curvature.

We can define the notion of umbilicity like as the case of hypersurfaces in Euclidean space. We say that a point
p= xﬂ (ug) (or ug) is an umbilic point if st (p) = Ke(p)idTI,M. Since the eigenvectors of Sl(p), sh (p) and Sd(p) are
the same, the above condition is equivalent to both the conditions Sh(p) = k" (p)i dr,m and s(p) = /cd(p)idrp M-
We say that M = xﬂ(U ) is totally umbilic if all points on M are umbilic. We now consider what is the totally umbilic
hypersurface in the lightcone LC*. We consider the intersection of LC* with a hyperplane in Rﬁ‘“:

HL(n,c) = HP(n,c¢) N LC*.

We say that H L(n, c) is a hyperbolic hyperquadric if n is spacelike, a parabolic hyperquadric if n is lightlike and a
elliptic hyperquadric if n is timelike. In [18] we showed the following classification of totally umbilic hypersurfaces
in LC*.
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Proposition 2.4. Suppose that M = xﬁ_(U ) is totally umbilic. Then k*(p) is constant k. Under this condition, we
have the following classification.

(1) If k* < 0, then M is a part of the hyperbolic hyperquadric HL(c, 1/~/—«t), where

¢= (cx’ w) +x8 ) e ST

—1
24/ =it
is a constant spacelike vector.
() If k* = 0, then M is a part of the parabolic hyperquadric HL(c, —2), where ¢ = xt (u) € LC* is a constant
lightlike vector.
(3) If k¢ > 0, then M is a part of the elliptic hyperquadric HL(c, —1/\//7), where

1 L. L Y4 n
S € L) € H'(=D)

is a constant timelike vector.

C =

By the above proposition, we can classify the umbilic point as follows. Let p = xﬁr(uo) eM = xﬂ(U) be an
umbilic point; we say that p is a timelike umbilic point if k* < 0, a lightlike umbilic point (or lightcone flat point) if
«t =0, or a spacelike umbilic point if k¢ > 0.

In [18] we have shown the lightcone Weingarten formula. Since (xi)ui (i = 1,...n — 1) are spacelike vectors,
we induce the Riemannian metric (the lightcone first fundamental form) ds* = Z?=_1l gfjduidu jonM = xi(U ),
where gfj () = ((xi)ul. (u), (xﬂ)u ; () forany u € U. We also define the lightcone second fundamental invariant by
hij ) = (=), ), (¢5)u; W) for any u € U.

Proposition 2.5. Under the above notations, we have the following lightcone Weingarten formula:
4 — 12 J £
x = — h ) Dy,
( _)u,- j; ( i ( +)uj

. , . -1
J k k
where (hz)l. = (hfk) (g/) and (g/) = <g£j) .
As a corollary of the above proposition, we have an explicit expression of the lightcone Gauss—Kronecker curvature
by using Riemannian metric and the lightcone second fundamental invariant.

Corollary 2.6. Under the same notations as in the above proposition, the lightcone Gauss—Kronecker curvature is

given by
det (1)
Ky=———=.
det (gaﬂ)

We say that a point p = x(u) is a lightcone parabolic point if K*(u) = 0, which is equivalent to the condition that
det (hf,.)(u) =0.

3. Spacelike parallels and caustics in Minkowski pseudo-spheres

In this section we introduce the unified notion of parallels of a spacelike hypersurface in Minkowski pseudo-
spheres. For any fixed real number ¢ € R, we define a mapping L‘f :U — Apby

£ w) = (exr’z(d’)x‘j(u) + wxé W), eXp2(¢)xi(u) _ wxé (u)) :

We respectively call the images of mappings

exp(®) ,

Ty 0 qu(u) =

(u) + wﬁ(w)
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the hyperbolic parallel and
exp(e) ,

) xi (u) —

exp(_d))xg )

7120 LY () = 5

the de Sitter parallel.
We now explain why we call these images parallels. If ¢ = 0, 711 o C? (u) = x"(u) and 715 o E(l)(u) = x4(u).
Since we have the relations

) =x"w +x'w),  xLw =x"w) —xw),

we can translate the hyperbolic parallels and the de Sitter parallels into
11 0 L9 () = cosh ¢x” () + sinh gx? (u)

and
12 0 L9 () = sinh ¢x" (u) + cosh gx (u).

The above formula means that 71 o E? (u) is the point on the geodesic started from xh (u) directed by x4 (u). Therefore

the image of 71 o ET is the locus of the points on the geodesics from x” (U) directed by the unit normals x¢ with a
constant length. The second formula also means that the geodesics starts from x?(U) directed by the unit normals x”
with a constant length. Therefore we might call these parallels.

We also consider extra properties of E? : U —> A from the viewpoint of the contact geometry. For positive real
numbers A, u with A - u = 1, we define a diffeomorphism

. i+l n+l1 n+1 n+1
W()L’M) . R] X Rl e Rl X R]

by

AV +uw Ay — uw
VoW, w) = ( R 5 )

Since A - u = 1, we have ¥; ,)(A4) = A;. We also have

AV 4+ pw AV — uw 1
vy 01 = ,d = — =0y,

so that ¥, )| A4 is a contact diffeomorphism. By definition, we have Wexp(g),exp(—¢)) © L4 = ﬁ‘f. Since L4 is a
Legendrian embedding, E‘f is a Legendrian embedding.

Proposition 3.1. The hyperbolic parallel (respectively, de Sitter parallel) is the wave front set of the Legendrian
mapping | o E'f (respectively, o o L1).

We call E‘f a Legendrian parallel.

In the classical Euclidean case, if the distance of the parallels varies, the locus of the singularities of parallels forms
a caustics of a certain Lagrangian manifold.

We now review some properties of symplectic manifolds and Lagrangian submanifolds. Let N be a 2n-dimensional
smooth manifold and w be a 2-form on N. The 2-form w is non-degenerate if (w)" # 0 at any point of N. We say
that (N, w) is a symplectic manifold if w is a closed non-degenerate 2-form. In this case w is called a symplectic
structure or a symplectic form. Let ¢ : N —> N’ be a diffeomorphism between symplectic manifolds (N, w) and
(N, ). We say that ¢ is a symplectic diffeomorphism if ¢*«w’' = w. Two symplectic manifolds (N, @) and (N’, »")
are symplectic diffeomorphic if there exists a symplectic diffeomorphism ¢ : N —> N’. A submanifoldi : L C N of
a symplectic manifold (N, ) is said to be Lagrangian if dim L = n and i*» = 0. We say that a smooth fiber bundle
7w : E —> M is called a Lagrangian fibration if its total space E is furnished with a symplectic structure and its fibers
are Lagrangian submanifolds. Let 7 : E —> M be a Lagrangian fibration. For a Lagrangian submanifoldi : L C E,
mwoi: L — M iscalled a Lagrangian map. The critical value set of the Lagrangian map 7 o is called a caustics of
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i which is denoted by Cr. For any p € E, it is known that there is a local coordinate system (x1, ..., Xp, P15 .-+, Pm)
around p such that

T(X1y ooy Xy Plseees Pm) = (X15 -y Xm)

and the symplectic form is given by

m
w:de,-/\dxi

i=1

(cf. [1], 20.3).

We now consider what is the corresponding caustics for spacelike parallels in Minkowski pseudo-spheres. We
consider the symplectification (A} x Ry, —d(nf12)) = (41 x Ry, d(nby1)) of the contact manifold A;, where
((v,w),n) € Ay x R4. Here R, is a set of the positive real numbers. Define a mapping

Zl:Ux]R—> A x Ry
by
Li(u, ¢) = (LI ), exp(—p)).

Since ﬁqf is an embedding for any fixed ¢, L 1 is also an embedding. By a direct calculation, we have (Zl)*(neu) =

—exp(—¢)de¢, so that d(E1)*(77912) = —dexp(—¢) A d¢ = 0. This means that El is a Lagrangian embedding. Let
7t Ay x Ry — H"(=1)and 713 : A; x Ry — S} be the canonical projections, then both the projections are
Lagrangian fibrations. Therefore, we have two Lagrangian mappings:

Froly:UxR— H'(=1);  F110Li(u,¢)=m oL w)

ﬁlzozl :U xR — ST; 7?12021(u,¢)=mzo£‘f(u).

By definition, we have

(110 L1) (11 0 L) (11 0 L1) &
W)= a—uil(“)’ g W ®) =mae Liw.
I(Fn oL 9 c? I(Fno L
(711820 1)(u’¢): (12 0 1)('4)’ (T12 0 1)(u,¢)=mloﬁ‘f(u)
u; 814,' a(,b
fori = 1,...,n — 1. Since £ is a Legendrian embedding, we have ((;r1; o ﬁ‘f)ui (u), mp o E‘f(u)) = (my o

L‘f (u), (J'{Jzoﬁ(f)ui (u)) =0.1t follows that (771 OE({))ML(u)’ ..., Oﬁ(f)u,l,l (u) is linearly independent if and only
if (T 0 L), u, @), ..., @10 Ly, (W, P), (@1 o L1)g(u, ¢) is linearly independent. Therefore, (u, $) € U x R
is a singular point of 7711 o L 1 if and only if u is a singular point of 7711 o E?. The same assertion holds for 715 o L 1. We

denote the critical value sets of 71 o L 1 by Cp, (EN 1) and call the hyperbolic caustics of L 1. We also denote the critical
value sets of 71y o L] by C4(L1) and call the de Sitter caustics of L1. The above arguments show the following
proposition.

Proposition 3.2. The hyperbolic caustics Cp, (E 1) (respectively, de Sitter caustics Cy4 (/3 1)) is the locus of singularities
of the hyperbolic parallels (respectively, de Sitter parallels).

4. Caustics and evolutes of spacelike hypersurfaces in Minkowski pseudo-spheres

We now introduce the notion of evolutes of spacelike hypersurfaces in the lightcone. For a spacelike embedding
xﬁ : U —> LC*, we define the total evolute of M = xﬁ_(U) by
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14
TEw = {L”)')' <xﬁ(u)+ 1 xﬂ(u))

2/ |kt (u it (u)

kt(u)is a lightcone principal

curvature at p =xﬂ(u), U e U} .

For a spacelike hypersurface as the above, we have the following decomposition of the total evolute:

TEy(u) = HEy UDEy,

where
1
HEpy = { ———— " )x® () +x° )|’ (u) is a lightcone principal
{ 2kt () *
curvature with « (1) > 0 at p= xﬁ_(u), u e U}
and
-1
DEy = {| ———— ( x’.(w) + x4 )|kt () is a lightcone principal
{ 2/ —kt(u) *

curvature with Kz(u) <Qatp= xﬁ_(u), u e U} .

We can show that HEy C H"(—1) and DEy C S}. Therefore we call H Ey (respectively, D E ) the hyperbolic
evolute (respectively, de Sitter evolute) of M = xﬂ(U ).

For any fixed lightcone principal curvature ¢, we define a smooth mapping H E ’1{; :Uy — H"(—1) by

Kt _ L ‘ ‘
HE)y (u) = (k" (xS () +xZ(w)),

1
2kt (u)
where Uy = {u € U | k*(u) > 0}. We can also define a smooth mapping SE"MZ : U- — 8} by the similar way for

U_ = {u e U |«k'u) < 0}. The above mappings give local parametrizations of the evolutes. We have the following
proposition:

Proposition 4.1. Ler M = xﬁ(U ) be a spacelike hypersurface in LC* without lightcone parabolic points and
lightcone flat points.

(A) The following are equivalent:

(1) M is totally umbilic with «t>o.

(2) HE ) is a point in HY} (—1).

(3) M is a part of an elliptic hyperquadric.
(B) The following are equivalent:

(1) M is totally umbilic with k* < 0.

(2) DEy is a point in S7.

(3) M is a part of an hyperbolic hyperquadric.

Proof. (A) By Proposition 2.4, (1) and (3) are equivalent.
We assume that the condition (1) holds, then the lightcone principal curvature k¢ (u) = k¢ is constant and k¢ > 0.
Therefore we have
dHEY, 1

” (u) = > m(xf(xi>u,.(u)+<x‘i>u,.(u»
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forany u € U. By the definition of the 1ightcone principal curvature, —(x* Ju; = K¢ (xﬂ)ul. fori =1,....,.n— 1.1t
follows that 8(HE ¢/ou;)(u) =0fori =1,...,n— 1.1t concludes that HE;j(u) is a point.
On the other hand, we calculate that

OHEY, 1|« (e()
du; 2| 2yt U

1 4 l 4
—Kg(u)x_(u)>+ Kt (u) ((x+)u,-<u)+ T ot >u,(u))}

By the lightcone Weingarten formula (Proposition 2.5), we have

dHEX 1|« -
M =3 L”))(xi(u)— I <u>)+¢ C(u) (Z( <h‘>’><x+>u,(u>>}

ou; 2kt (u =1
Since {x%,x%, ®%)u,, ..., @%)y, ) is linearly independent, (aHE;j /du;)(u) = 0 if and only if M is umbilic at
p= xi (u) and Kf;i (u) =0fori =1,...,n — 1. It follows that (1) and (2) are equivalent. This completes the proof
of (A).

The assertion (B) also follows from straightforward calculations like as those for the proof of (A). [

In [14] we have defined the notion of evolutes of hypersurfaces in H"(—1) as follows. For an embedding
h'. U —s H"™(—1), we define the total evolute of M = x" (U) by

k% (u) is a de Sitter principal

TELE = :t& < ") + ——— d(u)>
Y VIGD2w) 1] "< )
curvature at p = x" (u), u e U} .

By the relations xft =x" + x4 and Ki (u) = —1 =+ 9 (u), the above definition of the total evolute for an embedding

h . U —s H"(—1) is the same as the definition of the total evolute for xﬁ. We can also define the total evolute for

a spacelike embedding x¢ : U —> ST. It also coincides with the definition of the total evolute for xﬁr. Therefore we
omit the detail here.

5. Timelike and spacelike height functions

In this section we consider two kinds of families of height functions on a spacelike hypersurface in the lightcone
in order to describe the hyperbolic evolute and the de Sitter evolute of the spacelike hypersurface.

For the purpose, we need some concepts and results in the theory of unfoldings of function germs. We shall give a
brief review of the theory in Appendices A and B.

We now define two families of functions

HT :U x H"(-1) — R
by HT (u,v) = (x% (u),v) and
S:Ux S —R

by HS(u,v) = (xﬁ(u), v). We call HT (respectively, HS) a timelike height function (respectively, a spacelike height
function) on xﬁ : U —> LC*. We denote that hf(u) = HT (u,v) (respectively, hg(u) = HS(u,v)).

Proposition 5.1. Let xﬁ : U —> LC* be a spacelike embedding. Then

(D) (8h§/8ui)(u) = 0G = 1,...,n — 1) if and only if there exists a non-zero real number )\ such that
v = xl ) + (1/40)x8 ().
2) (8h§/8u,~)(u) = 0@G = 1,...,n — 1) if and only if there exists a non-zero real number )\ such that

v = axt () — (1/40x% (w).
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Proof. (1) There exist real numbers A, u, & (i = 1,...,n — 1) such thatv = )\xﬂ + uxt + Zfz_ll & (xﬁ)ui. Since
(0H/ouj)(u,v) = ((xﬂ),,l., v), we have 0 = ((xﬁ)ui, v) = Z?;% Ejgfi(u). Since gfj is positive definite, we have
;=0 =1,...,n—1). We also have —1 = (v,v) = ZAu(xﬂ,xZ_) = —4Au. This completes the proof for the
assertion (1). The proof for the assertion (2) is given by almost the same calculations as those for the assertion (1), so
that we omit the detail. [

By Proposition 5.1, we can detect both of the catastrophe sets (cf. Appendix A) of H” and H® as follows:

T n 4 1 14
CHT) = {(u,v) ceUxH (—1)|v:)\x+(u)+ax_(u)},

C(H®) = {(u, v) e U x Sy = ax’(u) — %x‘f_(u)} )

Here, we have the following decompositions:
CHY=c,(H"YUC_(HT) and C(H®) =CL(H®)UC_(HS),

where C1.(HT) = {(u,v) | v = axf@) + (1/40x5w), » > 0}, C_(HT) = {u,v) | v = af(u) +
(1/40)x% (1), 1 < 0} and the definitions of C,(H®) and C_(H®) are given by the similar way. We also calculate
that

2HT

1
(%) = (g, (). ¥) = —Agfy + —hi

auiauj
on C(HT) and
aZHS
8u,~8uj

1
(%) = {0 g @), v) = =gl —

on C(H?S).

Therefore, det(’l—[(hf)(u)) = det ((82HT/8ui8uj)(u, v)) = 0 (respectively, det(H(hf)(u)) = 0) if and only if
ktw) = 422 (respectively, Ktw) = —42%) is a lightcone principal curvature. Since v € H"(—1) (respectively,
RS S’f) and k' (u) = 422 (respectively, ktu) = —4A2) is a lightcone principal curvature with ktw) >0 (respectively,
«t () < 0), we have

Byr = HEy U (—HE)y) (respectively, Bys = DEy U (—DEy)),

where (—HEy) = {—v | v € HEy} (respectively, (—DEy) ={—v | v € DEy}).

Proposition 5.2. We assume that p = xi (uo) is not a lightcone flat point of M = xﬁ(U ), then we have the following
assertions:

(1) p is an umbilic point with k*(p) > 0 if and only if there exists vo € H™(—1) such that ug is a singular point of
h[o and rank H(thO)(uo) =0.

(2) p is an umbilic point with k(p) < 0 if and only if there exists vy € ST such that ug is a singular point of hgo and
rank H (hy, ) (uo) = 0.

Proof. (1) Since p is an umbilic point, Sf, = Ke(p)idTp m- There exists an orthogonal matrix Q such that
"0((h?)Q = «*(p)I. Hence, we may consider the case (h‘)! = k‘(p)I, so that (hfj) = Ke(p)(gfj). Then we
put vo = )Lxﬂ(uo) + ux® (ug) € H*(—1), where A = £kt (p)/2v/kt(p)), . = £(1/2/k%(p)). In this case the
Hessian matrix H(h! )(uo) = (—/\gfj + thj) = (-2 + uxﬂ(p))(gfj) =0.

On the other hand, if —)»gf,. + thj = 0 for all i, j, then (hfj) = /c‘z(p)(gf/.) («“(p) = /). This is equivalent to
the condition ((h*)!) = k1.

The proof of (2) is also given by direct calculations like as those of (1). [
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We say that uq is a timelike ridge point (respectively, spacelike ridge point) if hl (respectively, hf ) has the
Ay>3-type singular point at uq, where v € Byr (respectively, v € Bys).

For a function germ f : (R"~!,%y) —> R, f has Ay-type singular point at i if f is RT-equivalent to the germ
:i:ulfrl iu% +.. d:ui_l. We say that two function germs f; : R 7)) —R@GE=1,2)are R -equivalent if there
exists a diffeomorphism germ @ : (R”il, ) — (R 1, i17) and a real number ¢ such that f, o ®(u) = f1(u) +c.

We now consider the geometric meaning of ridge points. Let F' : LC* — R be a function and xﬁr U — LC*
be a spacelike hypersurface. We say that xﬁ and F~1(0) have a corank r contact at py = x(uy) if the Hessian of the
function g(u) = F oxf_ (u) has corank r at up. We also say that xﬂ and F~1(0) have an Ag-type contact at pg = x(ug)
if the function g(u) = F o x(u) has the Ai-type singularity at ug. By definition, if xﬁ and F~1(0) have an Ay-type
contact at pg = x(up), then these have a corank 1 contact. For any r € R and ag € HY (—1) (respectively, ag € S}),
we consider a function F : H} (—1) — R defined by F'(u) = (u, ag) — r. We denote that

HL(ag,r) = F~'(0) = {u € LC*|(u, ap) = r}.

Then H L(ay, r) is an elliptic hyperquadric (respectively, a hyperbolic hyperquadric) with center a if ag is in H (—1)

(respectively, S?). We putag = HE’;,IZ (uo) (respectively ag = DE;; (ug))and ro = —(+/ |KE(M())|/KZ (up)), where we
fix a lightcone principal curvature «¢(«) on U around u(, then we have the following simple proposition:

Proposition 5.3. Under the above notations, there exists an integer k with 1 <k <n — 1 such that M = xﬂ(U ) and
H L(ay, ro) have corank k contact at uy.

In the above proposition, H L(ag, ro) is called an osculating elliptic hyperquadric (respectively, osculating
hyperbolic hyperquadric) of M = xﬁ_(U ) if ap € H!(—1) (respectively, ap € S7). We also call ag the center of
the lightcone principal curvature k*(ug). By Proposition 5.2, M = xﬁ_(U ) and the osculating elliptic hyperquadric
(respectively, hyperbolic hyperquadric) have corank n — 1 contact at an umbilic point. Therefore the hyperbolic
(respectively, de Sitter) ridge point is not an umbilic point.

By the general theory of unfoldings of function germs, the bifurcation set B is non-singular at the origin if and
only if the function f = F|R” x {0} has the A,-type singularity (i.e., the fold type singularity). Therefore we have
the following proposition:

Proposition 5.4. Under the same notations as in the previous proposition, the total evolute T Ey; is non-singular at
ay = TEI"VIZ (uo) ifand only if M = xﬁ(U) and H L(ag, ro) have A,-type contact at ug. Here, TE’I{,; (ug) = HE’;,IZ (ug)
if ap € H'(—1) and TE%, (ug) = DE, (uo) if ag € S

6. Evolutes as caustics

In this section we naturally interpret the hyperbolic evolute and the de Sitter evolute of spacelike hypersurface in
the lightcone as the caustics given in Section 3.

For a spacelike embedding xﬁ : U — LC*, we consider the timelike height function H” and the spacelike height
function HS (cf. Section 5). We have the following proposition:

Proposition 6.1. Both the timelike height function HT : U x H"(—1) —> R and the spacelike height function
HS: U x S{ — Ron xﬁr are Morse families of functions.

Proof. First we consider the timelike height function.

For any v = (vg, vy, ..., vy) € H"(—1), we have vo = :i:\/vl2 + -+ +v2 + 1, so that

H (u,v) = JFXO(M)\/v% +o v L a1 @vr -+ X @) v,

where xﬂ (u) = (xo(u), ..., x,(u)). We will prove that the mapping
oHT aHT
AHT = e,
duq oupy_1
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is non-singular at any point. The Jacobian matrix of AHT is given as follows:

¢ ¢ (4] Un
<(x+)u1u17v> ((x+)u1un,17v) _x0u1v_0 +xlu1 —XOMIU—O +xnu1
¢ ¢ V] Un
((x+)u,,_|u| )y e <(x+)u,,_1u,,_1 V) —X0u,_ U_O + Xluyy 0 T XOup_g U_O + Xnu,_4
where (xf_) winj = Bzxf|r /0u;du ;. We will show that the rank of the matrix
V] Un
—X0u; — + X1y, —X0u; — + Xnu,
vo vo
X = :
V1 Un
~X0up—1 + Xluy— e —X0uy—1 T + Xnuy_
vo vo
isn—1lat(u,v)e C(HT). Itis enough to show that the rank of the matrix
V] Un
—Xo— +x1 —X0— + X
i i
n
—XOul_ +x1u1 —XOul— +~ng1
A= vo vo
V1 ' n
=XOuy_y T T Xlupey T XOuy—y T X,
vo vo
X
Xiuy
isnat (u,v) € C(HT). We denote that a; = : fori =0,...,n.
Kiuy_y
Then we have
V] Un
A=\|—-ap— +ay,...,—ap— +a,
vo vo
and
Vo V] v
detA = — - det(ay,...,a,) — — -det(ag,as, ...,a,) —--- — - -det(ay, ...,a,_1,ap).
vo vo vo
On the other hand, we have
4 4 4
Xy A A A D, = (—det(ay, ..., ay), —det(ag, az, ..., ay), ..., (—1)"det(ao, ..., an—1)).

Since xﬁ is lightlike, there exists non-zero real number & such that & ~x/i (u) = (xfzF A (xﬂ)u (A A (xﬂ)unfl)(u) (cf.
Lemma 2.1 in [18]).
Therefore we have

Yo Un ¢ ¢ ¢ 1 ¢ [ ¢
detA=<(U—0,...,%),x+/\(x+)ul/\-~-/\(x+)un1>=%<Ax++ﬁx_,§x+>
= 5 <xﬂ_,xe_)=—S #0
4vgA ALY

for (u,v) € C(HT).

Next we consider the spacelike height function. The proof is also given by direct calculations but a bit more
carefully than in the previous case. We use the same notations as those of the previous case (e.g., xﬁ and a; etc.). For
any v € ST, we have —v% + v% 4+ vﬁ = 1. Without loss of the generality, we might assume that v,, # 0. We have

vn=:|:\/1—i—v(z)—v]z—-u—vflil,sothat

HS (. v) = —x0(t)vo + x1 ()01 + -+ + X1 () vy :I:x,,(u)\/l I T
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We also prove that the mapping

OHS aHS
AHS =
ouy duy_1
is non-singular at any point. The Jacobian matrix of AH® is given as follows:
¢ ¢ vo Un—1
((x+)u1u1’v) ((x+)u1u,,,19v> —X0u, +xnulv_ Xn—luy — Xnuy ———
n n
4 4 Vo Up—1
<(x+)u,,,1u1 V) e ((x.:,.)u,,,lu,,,l V) = X0u_y t Xnup_y — 0 Xn—lupy — Xnup_; ———
Un Un
We will also show that the rank of the matrix
) V] Un—1
—X0u; + Xnu, — Xluy — Xnu; — Xn—luy — Xnu; ———
Up Uy Un
X = :
[%0) V1 Un—1
—X0u,—; t Xnup_y —  Xlup_y — Xnup—y— " Xn—luy—y — Xnupy_y ———
Un Un n

isn — 1at (u,v) € C(HS). It should be proven that the rank of the matrix

~

[20] (5] Un—1
A=\—-ao+a,—,a1—a,—,...,ay—1 —ay
Uy Up Uy

isn at (u,v) € C(H).
Therefore we have

n n

Un
Vo Up ¢ V4 £
( , _> XL A (x+)u1 ERRIVAN (x+)u,171

n—1
_ev 1) <,\x Ty _,x+A(xﬁ)u]--~A(xﬂ)un_1>

detA = (—1)"~ 1{—0 det(ay, . .. ,an)—%~det(a0,a2,...,an)+-~-+(—l)”v—n-det(ao,...,a,,_l)}
_( 1)}1 l<

G 1)” : =D"'¢
. A"é >—W¢°

for (u,v) € C(HS). This completes the proof of proposition. [

By the method for constructing the Lagrangian immersion germ from Morse family (cf. Appendix A), we can define
a Lagrangian immersion germ whose generating family is the timelike height function or the spacelike height function
of M = x(U) as follows. For a spacelike hypersurface xi : U — LC*, we denote that x‘i (u) = (xo(m), ..., x,(u)).
Define a smooth mapping

LHTY:c(HT) — T*H"(-1)

by
T V] Un
L(H )(u,v) = (v, —xo(u)— +x1(u), ..., —xo(u)— +xn(u)) ,
Vo vo
where v = (vg,...,v,) € H"(—1) and vo = :I:\/v% + -+ v2 + 1. Therefore we have the local coordinate
(v1, - .., vy). Here we have used the triviality of the cotangent bundle 7*H" (—1).
For the de Sitter space S}, we consider the local coordinate U; = {v = (vp, ..., v,) € S} | v; # 0}. Since T*S7|U;

is a trivial bundle, we define a map

Li(H) : C(H®) — T*S}|U; (i =0,1,...,n)
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by

s vo vl v Un
Li(H®)(u,v) = (v, —x0(u0) + 27 0) 1 @0) = 23 0) i (0) = )= ) m(u)—_) :
1 1 1 1
where v = (v, ..., v,) € S} and we denote (xo, ..., Xi,...,X,) as a point in n-dimensional space such that the i-th
component x; is removed. We can show that if U; N U; # @ fori # j, then L;(H5) and L ;(H) are Lagrangian
equivalent which are given by the local coordinate change of S{ and Lagrangian lift of it. Indeed, we denote that the
local coordinate change of S fori < j; ¢;; : Ui —> Uj, defined by

—~

@ij(vo, ... Uiy, 0y) = (vo,--~,vi =\/1+v§—v%—-~-—v?—~-~—v%,...,ﬁ},...,vn>,
and @;; : T*S}] — T*S] are Lagrangian lift of ¢;; which defined by @;;(§) = ((pl;i)*s . Then @;; are
symplectic diffeomorphism germs (cf. [1]). Also we define diffeomorphism germs o;; : U x U; — U x U; by
oij(u,v) = (u, ;;(v)) and 5;; = aif‘C(HS)’ then @;; o L;(HS) = Lj(H%) 0 5;; and ¢;j o = 7 o §;;. Therefore we
can define a global Lagrangian immersion, L(H") : C(HS) — T*S7.
By definition, we have the following corollary of the above proposition:

Corollary 6.2. Under the above notations, L(HT) (respectively, L(H®)) is a Lagrangian immersion such that the
timelike height function HT : U x HY (—1) —> R (respectively, spacelike height function HS : U x St — R)of
xﬁ is a generating family of L(HT) (respectively, L(H®)).

Therefore, we have the Lagrangian immersion L(HT) (respectively, L(H?3)) whose caustics is the hyperbolic
evolute (respectively, de Sitter evolute) of xi. We call L(HT) (respectively, L(HS)) the Lagrangian lift of the
hyperbolic evolute (respectively, de Sitter evolute) of xﬂ.

On the other hand, we define a mapping

v’ A x Ry — T*H"(—1)
by

V] v
o, w,n) = (v, n (—(vo + wo)v—0 + (1 +wi), ..., —(vo+ wO)v_Z + (v + wn)>) ,

where v = (vg, vi, ..., vy), w(wg, wy, ..., wy). Let o be the canonical one-form on 7* H" (—1). Then we have

(") e =Y n (-(Uo + wo);’—(") + (i + w,~)> dv;

i=1

n n
n (—wo Z} v—'odv,' + Z} widvi)
i= i=

= n{dv, w)| A1 = 0611 = —nb12.

Therefore ¥ is a symplectic diffeomorphism. By direct calculations, we have

oo B gy = 101" (1 20D+ Ot ).

By the similar arguments as the above, we have the following theorem.

Theorem 6.3. For any spacelike hypersurface xﬂ : U — LC*, both the timelike height function HT : U x

H'(-1) — R and the spacelike height function HS : U x St — R are generating families of the Lagrangian
embedding L1 : U — A x Ry.

Since Byr = HEy U (—HEy) (respectively, Bys = DEy U (—DEy)), Ch(Zl) = HEy U (—HEy)
(respectively, Cs(L1) = DEy U (—DE)y)). This means that the hyperbolic caustics (respectively, de Sitter caustics)
might be identified with the hyperbolic evolute (respectively, de Sitter evolute) of M.
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7. Big fronts

In this section we consider a contact manifold (A; x Ry x R, d¢ + n6y2), where ((v,w), n,¢) € A1 x Ry x R.
For a spacelike hypersurface xi : U — LC*, we have a mapping

L1:UxR— A xRy xR
defined by
Li(u, ¢) = (L1(u, ¢), exp(—¢)).

Since E 1 is an embedding, Zl is also an embedding. Moreover, we have
(£1)*(d¢ + nb12) = d exp(—¢) — (L1)* (1612) = d exp(—¢) — d exp(—¢) = 0,

so that £ is a Legendrian embedding. We call it the big Legendrian embedding associated to the Legendrian family
Lo

Letmy : Ay xRy xR — H*(=1) xR, w12 : A1 x Ry x R —> S} x R be the canonical projections. Since
011 = —0612, we have d¢ + nf;p = d¢ — nbq1, so that w11 and 7, are the projections of Legendrian fibrations.
Moreover we have the canonical projections 7y @ H"(—1) x R — H"(=1), mp2 : H"(—=1) x R — R,

mq1 2 S X R — SY and 4o @ S7 x R —> R. Since both of 742 0 711 0 £ and 742 0 12 0 L are submersions, £
is a graphlike Legendrian unfoldings with respect to both the Legendrian fibrations 71;, i = 1, 2. For definitions and
basic properties of graphlike Legendrian unfoldings, see Appendix C.

We define two families of functions

H UxH'(-1)xR —R
by H' (u.v,r) = (x4 (u),v) —r = H (u,v) — r and
H :UxS§"xR— R

by ﬁs(u, v, r) = (xﬂ w),v) —r = HS(u,v) —r. We call H (respectively, ﬁs) an extended timelike height function
(respectively, extended spacelike height function). We consider the mapping

T A xRy xR —> T*H"(—1) x R

defined by @T W, w,n,¢) = (v, w,n), ). We might identify T*H"(—1) x R with 1-jet space J'(H"(—1), R)
whose contact structure is given by dy — «, where « is the canonical one-form on 7*H" (—1) and y is the coordinate
of R. By the previous calculation, we have

—T *
(7") @y - o) = de + 002,
so that ' is a contact diffeomorphism. By Proposition 6.1, we have the following proposition.
Proposition 7.1. Both the extended timelike height function H UxH" (—=1) xR — R and the extended spacelike
height function " U x 8t x R — R are graphlike Morse families of hypersurfaces.

It follows from the above proposition that we have the following theorem.

Theorem 7.2. For any spacelike hypersurface xi : U —> LC*, both the extended timelike height function

H : U x H'(—1) x R — R and the extended spacelike height function " : U x 87 x R — R are generating
families of the graphlike Legendrian unfolding L.

8. Contact with families of hyperquadrics

In [18] we have studied the contact of spacelike hypersurfaces in LC* with parabolic hyperquadrics as applications
of theory of contact due to Montaldi [21] and the theory of Legendrian singularities. Briefly speaking, we can
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completely characterize the contact of spacelike hypersurfaces with parabolic hyperquadrics in terms of the Lightcone
Gauss images in generic. If we consider the spacelike parallels and the evolutes instead of the Lightcone Gauss maps,
we might consider the problem what kind of geometric information we can get from the singularity of the spacelike
parallels or the evolutes. We now start to give a brief review of the theory of contact due to Montaldi [21]. Let
X;,Y; (i =1, 2) be submanifolds of R"” with dim X| = dim X, and dim Y| = dim Y,. We say that the contact of X
and Y; at y; is the same type as the contact of X and Y5 at y; if there is a diffeomorphism germ & : (R”, y;) —
(R", y2) such that (X)) = X, and @(Y]) = Y. In this case we write K (X1, Y1; y1) = K(X2, Y2; y2). It is clear
that in the definition R” could be replaced by any manifold. In his paper [21], Montaldi gives a characterization of the
notion of contact by using the terminology of singularity theory.

Theorem 8.1. Ler X;,Y; (i = 1,2) be submanifolds of R" with dimX; = dim X, and dimY; = dimY;. Let
gi : (Xi,x;)) — @®R",y;) be immersion germs and f; : (R",y;) — (RP,0) be submersion germs with
Yi,yi) = (ff1 (0), yi). Then K(X1, Y1; y1) = K(X2, Y2; y2) ifand only if f1ogy and f; o g3 are K-equivalent. For
the definition of K-equivalence, see [20].

For our purpose this theorem is not sufficient. We need the theory of contact of submanifold with families of
hypersurfaces. We have two kinds of theories which describe the contact with families of hypersurfaces.

Firstly we consider the one-parameter families of hypersurfaces. Let X; (i = 1,2) be submanifolds in R"” with
dim X| = dim X7 and f; : (R" xR, (¥, #;)) — (R, 0) be function germs such that f; ; are submersion germs for any
t € (R, #;). Here, we define that f; ;(y) = fi(y, t). We have hypersurface germs (R" xR, (y;, ) D V(fi) = ff] 0).
We say that the parametrized contact of X1 and Y at (yi,t) is the same type as the parametrized contact of
X, and ) at (yp,t) if there is a diffeomorphism germ @ : (R" x R, (y1,#)) — R" x R, (2, 12)) of the
form @(y,t) = (¢p(y, 1), t + (1 — t1)) such that #(X; x R) = X, x Rand #());) = V». In this case we write

PK (X1, Vi; (1, 11)) = PK(X2, V2; (y2, 12)).

We can show the following parametric version of Montaldi’s theorem just along the line of the proof of the original
theorem of Montaldi [21].

Theorem 8.2. With the above notations, PK (X1, V1; (y1, 1)) = PK (X2, Va; (2, 1)) if and only if f1 o0 (g1 X idR)
and f> o (g2 X idR) are S.P-K-equivalent. For the definition of S.P-K-equivalence, see Appendix B.

Secondly we consider the codimension-1 foliation germs. Let X; (i = 1,2) be submanifolds of R" with
dim X| = dim X», g; : (X;,x;)) — (R", y;) be immersion germs and f; : (R",y;) — (R, 0) be submersion
germs. For a submersion germ f : (R",0) — (R, 0), we denote that F be the regular foliation defined by f;i.e.,
Fr = {f~)|c € (R,0)}. We say that the contact of X1 with the regular foliation Fy, at y; is the same type as
the contact of X with the regular foliation F, at y; if there is a diffeomorphism germ & : (R”, y;) — (R", y2)
such that #(X1) = X, and @(Y1(c)) = Ya(c), where Yi(c) = fi_l(c) for each ¢ € (R, 0). In this case we write
K(X1, Fp:y1) = K(X2, Fy,; ¥2). We apply the method of Goryunov [7] to the case for R+—equivalences among
function germs, so that we have the following:

Proposition 8.3 (/7, Appendix]). Let X; (i = 1,2) be submanifolds of R" with dimX; = dimX, = n — 1
(i.e., hypersurface), g;i : (X;,x;) —> (R", y;) be immersion germs and f; : (R",y;) — (R, 0) be submersion
germs. We assume that x; are singularities of function germs f; o g; : (X;, x;) —> (R, 0). Then K (X1, Fp;y1) =
K(X2, Fp,; y2) ifand only if f10 g1 and fr 0 g3 are R -equivalent. For the definition of R -equivalence, see [20].

On the other hand, Golubitsky and Guillemin [6] have given an algebraic characterization for the R " -equivalence
among function germs. We denote C;°(X) is the set of function germs (X, 0) — R. Let J¢ be the Jacobian ideal in
CgO(X) (e, Jy = (9f/0x1,..., 8f/8xn)c(c)>o(x)). Let Ri(f) = Cgo(X)/JJ]ﬁ and [ f] be the image of f in this local
ring. We say that f satisfies the Milnor condition if dimpR(f) < oo.

Proposition 8.4 (/6, Proposition 4.1]). Let f and g be germs of functions at 0 in X satisfying the Milnor condition
with df (0) = dg(0) = 0. Then f and g are R™-equivalent if

(1) The rank and signature of the Hessians H( f)(0) and H(g)(0) are equal, and
(2) There is an isomorphism y : Ra(f) —> Ra(g) such that y ([ f]) = [g].
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We now consider two families of functions
97 LC* x H'(-1) — R
defined by 9T (x,v) = (x,v) and
95 LC* x ST — R
defined by 9H50x,v) = (x,v). For any vo € H"(—1), we define hfo(x) = 97 (x,v9) and we have an elliptic

hyperquadric

vo

(bT )71 (¢c) = HP(vy, ¢) N LC* = HL(v, ¢).

By definition, h[o is a submersion. Let xﬂ : U —> LC* be a spacelike hypersurface. For any ug € U, we have a
timelike vector vo = (—1/2c)x/f|r (ug) + (—c/2)xe_ (ug) € H"(—1), then we have

2 0 X5 (0) = 97 o (& X idpn(—1))(uo, vo) = H' (o, v0) = ¢
and
3y, oxf) oHT
%0 9% (1o = P g, vy =0,
314,' 8ul~
fori = 1,...,n — 1. This means that (h{o)_l (c) = HL(vp, c) is tangent to M = xf_(U) at p = xﬂ_(uo). In this

case we call HL(vg, ¢) a tangent elliptic hyperquadric of M = xﬁ_(U )atp = xﬁ (uo) with the center vo. We denote
it as EH L(vo, ¢). However, there are infinitely many tangent elliptic hyperquadrics at a general point p = xﬁ(uo)
depending on the real number c. If the point vy is a point of the hyperbolic evolute of M = xﬂ (U), the tangent elliptic
hyperquadric with the center vy is called the osculating elliptic hyperquadric (or focal elliptic hyperquadric). Since

ZO is a submersion, we define a parallel family of elliptic hyperquadrics

EMLwo) = (0T,) (),

where hT : (LC* x R, (v9,0)) —> (R, 0) is defined by hT (x, 1) = b7 (x) — 1. It vo = H E%, (ug), then EHL(vo)
is the parallel family of elliptic hyperquadrics such that the hyperquadric through (vg, 0) is the osculating elliptic
hyperquadric of M = xﬁ_(U ) with the center vo. We can also define the regular foliation

For = {7 ) | c e R,0)}
0

whose leaves are elliptic hyperquadrics such that (IJZO)_l (0) is the osculating elliptic hyperquadric with the center v.
In this case ((xﬁ_)_l (fhr ), up) is a singular foliation germ at uo which is called an osculating elliptic hyperquadrical
Yo
foliation of M = x°.(U) at p = x% (ug). We denote it by OF T (M, uy).
Let (xﬁ)i 1 (U,u;) — LC* (i = «, B) be spacelike hypersurface germs. We consider timelike height functions

¢
HI - (U x H}(=1), (u;,v)) — Rof (x});, where v; = HE}, (;). We denote that 1| () = H[ (u, ), then we

i
have hgvi (u) = f); o (xﬂ)i (u). As an application of Appendices B and C, we have the following theorem:

Theorem 8.5. Let (xﬁ_)i 2 (U,u;) —> LC* (i = a, B) be spacelike hypersurface germs such that the corresponding
graphlike Legendrian unfolding germs

L (CHD), (ui,vi)) — JUH"(—1),R)

¢
are S.P*-Legendrian stable, where v; = H E;}i (ui). Then the following conditions are equivalent:

(1) PK(})a(U). EHLEY): (4o ua)) = PK(x§)pU), EHLWYp): () p(up)).
(2) hI . and h%

@, p.v, GT€ S.P-K-equivalent.
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3) H_aT and H_ﬂT are v-S.PT-K-equivalent.
@) SHaT and EHﬁT are S.P™T-Legendrian equivalent.
(5) The graphlike unfoldings of wave fronts W (£ HaT) and W (£ Hﬁr) are S. P -diffeomorphic.

Proof. By Theorem 8.2, the condition (1) is equivalent to the condition (2). Since both of £,r are § .P*-Legendrian

stable, both of H_lT are S.PT-K-versal deformations of E respectively (cf. Theorem B.6). By Proposition B.5, the
condition (2) implies the condition (3). It always holds that the condition (3) implies the condition (2). By Theorem B.6
(1), the condition (3) is equivalent to the condition (4). Since both of £, are S. PT-Legendrian stable, the assumption

of Proposition B.8 is satisfied for £7. It follows that the conditions 64) and (5) are equivalent. This completes the
proof. O

We also have the following theorem as an application of Appendix A.

Theorem 8.6. Let (xﬁr),- :(U,u;) — LC* (i = a, B) be spacelike hypersurface germs such that the corresponding
Lagrangian submanifold germs

L(HT) : (CH]), (i, v)) — T*H"(~1)

are Lagrangian stable, where vi = H EKM{ (u;). Then the following conditions are equivalent:
(D) K (e (U), Fy 3 (¢ (e)) = K(*) U, Frp 5 (635 wp).

() hl, and hg,vﬁ are R -equivalent.

(3) H! and H ﬁT are P-RT-equivalent.

@ L(HO[T) and L(HﬁT) are Lagrangian equivalent.

(5) (a) The rank and signature of the H(h )(ua) and ’H(hﬁ u,q)(“ﬁ) are equal,

(b) There is an isomorphism y : Ro(h a,va) —> Ry(h ’vﬂ) such that y([h ES (AT 1.

Proof. By Proposition 8.3, the condition (1) is equivalent to the condition (2). Since both of L(H, Ty are Lagrangian
stable, both of H, T are R*-versal unfoldings of hT ~respectively. By the uniqueness theorem on the R*-versal
unfolding of a functlon germ, the condition (2) is equllvalent to the condition (3). By Theorem A.2, the condition (3)
is equivalent to the condition (4). It also follows from Theorem A.2 that both of th satisfy the Milnor condition.
Therefore we can apply Proposition 8.4 to our situation, so that the condition (2) is equivalent to the condition (5).
This completes the proof. [

B.vp

We remark that if L(H]) and L(H ﬁT ) are Lagrangian equivalent, then the corresponding hyperbolic evolutes are

diffeomorphic. Since the hyperbolic evolute of a hypersurface M = xﬂ_ (U) is considered to be the caustic of L(HT),
the above theorem gives a symplectic interpretation for the contact of hypersurfaces with family of hyperspheres (cf.
Appendix A).

On the other hand, we have the following proposition.

Proposition 8.7. If L(HO[T ) and L(HﬂT ) are Lagrangian equivalent, then the graphlike unfoldings of wave fronts
W(Lyr) and W(SH/g‘) are S.PT-diffeomorphic.

Proof. Since the S.P*-Legendrian equivalence implies the S. P -diffeomorphism, the assertion directly follows from
Proposition C.2. [

By Proposition C.3, if £47 is S.PT-Legendrian stable, then L(H Ty is Lagrangian stable. Therefore, we have the
following corollary of Theorem 8.6 and Proposition 8.7.

Corollary 8.8. Let (xﬂ)i :(U,u;) — LC* (i = «, B) be spacelike hypersurface germs such that the corresponding
graphlike Legendrian unfolding germs

Lo (CHD), (i, vi)) — J'H"(=1),R)

are S.P*-Legendrian stable, where v; = HE (u ).
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If K((xﬁ)a(U), .7:[35 ; (xi)a (ug)) = K((xﬁ),g(U), ‘7:‘)5/3 ; (xi)/g (ug)), then the graphlike unfoldings of wave fronts
W(Lyr) and W(»QHﬁT) are S.PT-diffeomorphic.

Proof. By Theorem 8.6, if K ((x})a(U). Fyr : (¢})a(ua)) = K((xf_)ﬂ(U),]-"h[ﬁ; %)p(up)), then L(HI) and

L(H ﬁT ) are Lagrangian equivalent, so that £ 7 and £ up are S PT-Legendrian equivalent by Proposition 8.7. [

Corollary 8.9. Under the same assumptions as those of Theorem 8.6, we have the following: If one of the conditions
of Theorem 8.6 is satisfied then

(1) The hyperbolic evolutes H Ey,, and H Ey, are diffeomorphic as germs.

(2) The osculating elliptic hyperquadrical foliation germs OFT (M, uy) and OFT (Mg, ug) are diffeomorphic as
germs.

Similarly we can construct the osculating hyperbolic hyperquadric (or focal hyperbolic hyperquadric) of a
spacelike hypersurface xﬁr : U —> LC* by using a function % : LC* x S{ — R. For any vy € S, we also
denote that f)fo (x) = H5(x, vo) and we have hfo(u) = hgo o xﬁ(u). We can show that (bfo)_l (¢) = HL(vg, c)
is tangent to M = xf_(U) at p = xﬁ_(uo). In this case we call HL(vq, ¢) a tangent hyperbolic hyperquadric of
M = xﬁ(U )at p = xﬁ(uo) with the center v, we denote it H H L (v¢, ¢). However, there are infinitely many tangent
hyperbolic hyperquadrics at a general point p = xﬁ (up) depending on the real number c. If the point v is a point of
the de Sitter evolute of M = xf_(U ), the tangent hyperbolic hyperquadric with the center vy is called the osculating

hyperbolic hyperquadric (or focal hyperbolic hyperquadric). Since ()50 is a submersion, we define a parallel family of
hyperbolic hyperquadrics

HHL(vo) = (ﬁ)q (),

where b5 : (LC* x R, (0, 0)) —> (R, 0) is defined by bS (x, 1) = b3 (x) — 1. If vg = DE®, (o), then HHL(v) is
the parallel family of hyperbolic hyperquadrics such that the hyperquadric through (vg, 0) is the osculating hyperbolic
hyperquadric of M = xﬂ(U ) with the center vo. We can also define the regular foliation

Fes ={03)7' () | c € (R, 0)}
0

whose leaves are hyperbolic hyperquadrics such that (hgo)_l(O) is the osculating hyperbolic hyperquadric with the
center vq. In this case ((x‘i)_1 (F B ), Uo) is a singular foliation germ at u( which is called an osculating hyperbolic
UO

hyperquadrical foliation of M = xﬁr(U yatp = xﬁ (up). We denote it by OF s (M, ug). Then we have the following
theorems:

Theorem 8.10. Let (xﬂ)i :(U,u;) — LC* (i = «, B) be spacelike hypersurface germs such that the corresponding
graphlike Legendrian unfolding germs

Lys + (CHD), i, vi)) — J' (S}, R)

¢
are S.P " -Legendrian stable, where v; = DE;Z (u;). Then the following conditions are equivalent:

() PK((x%)o(U), HHLWe); (¢%)a(Ua)) = PK((x)p(U), HHL®p); (x%)p(up)).

(2) h3 ,, and by, are S.P-K-equivalent.
(3) HS and H_g are v-S.P* K-equivalent.
4 £ HS and £ HS are S.PY-Legendrian equivalent.

(5) The graphlike unfoldings of wave fronts W(EHas) and W(EHg) are S.PT-diffeomorphic.
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Theorem 8.11. Let (xﬁ_)i (U, u;) — LC* (i = «, B) be spacelike hypersurface germs such that the corresponding
Lagrangian submanifold germs

L(H) : (C(HP), (i, vi)) — T*S}
L
are Lagrangian stable, where v; = D E;’)i (u;). Then the following conditions are equivalent:

(D) K(&)a(U), F 3 (¥ )awe)) = K() (U, Frg 5 (55 (wp).
() hS,, and hg’vﬁ
(3) HS and Hﬁs are P-R™-equivalent.

“4) L(H(f) and L(Hg) are Lagrangian equivalent.
(5) (a) The rank and signature of the H(hS , )(uq) and H(h3 )(ug) are equal,

o, Vy B.vg

(b) There is an isomorphism y : Rz(hi,ua) — R2(h§,vﬂ) such that V([hg,va]) = [hg’vﬂ].

are R -equivalent.

The proofs of the above theorems are direct analogies of the corresponding proofs of Theorems 8.5 and 8.6, so that
we omit the proofs.

We also have the following proposition. Since the proofs are also direct analogies of the proofs of Proposition 8.7
and Corollary 8.8, we omit them.

Proposition 8.12. If L(Ho*f) and L(H/SS) are Lagrangian equivalent, then the graphlike unfoldings of wave fronts
W(Lys) and W(EHg) are S.P T -diffeomorphic.

By Proposition C.3, if £s is S.P*-Legendrian stable, then L(H ) is Lagrangian stable. Therefore, we also have
the following corollary.

Corollary 8.13. Let (xﬁ)i : (U,uj) — LC* (i = «a,B) be spacelike hypersurface germs such that the
corresponding graphlike Legendrian unfolding germs

Lys 1 (CHP), (i, vi)) — J' (S|, R)

14
are S.PT-Legendrian stable, where v; = DE;}[ (up).
If K((xﬂ)a(U), fbﬁ ; (xﬁ)a (ug)) = K((xﬂ)ﬁ(U), }—bfﬁ ; (xﬂ)lg (ug)), then the graphlike unfoldings of wave fronts
W(Lys) and W(EHB@) are S.PT-diffeomorphic.

Corollary 8.14. Under the same assumptions as those of Theorem 8.11, we have the following. If one of the conditions
of Theorem 8.11 is satisfied then

(1) The de Sitter evolutes DEy,, and D Ey, are diffeomorphic as germs.
(2) The osculating hyperbolic hyperquadrical foliation germs OF5 (Mg, uy) and OF5 (M g, ug) are diffeomorphic
as germs.

Remark. If we assume that x” : U — H"(—1) is an embedding, we can get the information of the contact with
families of hyperspheres or equidistant hypersurfaces in H”(—1). Analogous assertion to Theorem 8.6 was given as
Theorem 5.3 in [14]. Moreover, if we consider a spacelike embedding x .U — ST, we also get the information
of the contact with families of hyperbolic hyperquadrics or elliptic hyperquadrics in S}. However the arguments are
almost the same as the previous case, so we omit the details.

9. Generic properties
In this section we consider generic properties of spacelike hypersurfaces in pseudo-spheres. The main tool is a

kind of transversality theorems. We consider the space of spacelike embeddings Emb;, (U, LC*) with Whitney C°-
topology. We also consider the functions $7 : LC* x H"(—1) — Rand $5 : LC* x S} —> R which have been
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defined in Section 8. We claim that h (respectively, hg ) is a submersion for any v € H"(—1) (respectively, v € S}).
For any x{, € Emb, (U, LC*), we have HT = §7 o (x{. x idyn(_1)) (respectively, HS = $5 o (x! x idgr)). We also

have the r-jet extension of HT (respectively, ﬁ):
JIHT U x H'(=1) x R — J"(U x R, R) (respectively, jIHS : U x §! x R — J' (U x R, R))

defined by jIHT (u,v,1) = j"hT(u, 1) (respectively, ji HS(u,v,1) = j"h3(u,1)). We consider the trivialization
JN’(U XR,R) = (U xR) xR x J'(n —1) 4+ 1, 1). For any submanifold Q C J"((n — 1) + 1, 1), we denote that
0 = (U x R) x {0} x Q. Then we have the following proposition as a corollary of Lemma 6 in Wassermann [26].
(See also Montaldi [22].)

Proposition 9.1. Let Q be a submanifold of J"((n — 1) 4+ 1, 1). Then the set
Tg = {xﬁ_ € Emb; (U, LC*) | ]fﬁ is transversal to é}
is a residual subset of Embg (U, LC*), where X =T, S. If Q is a closed subset, then Té( is open.

For n < 4, we have a finite list of a generic classification of function germs f : (Rk x R,0) — (R, 0) by the
S. P-K-equivalence (cf. Zakalyukin [28] or Izumiya [ 10, Theorem 4.2]). By the above proposition and Proposition B.7,
we have the following theorem.

Theorem 9.2. Assume thatn < 4 and X = T, S. There exists an open dense subset O C Embg (U, LC*) such that
for any xﬁ € O, the germ of the graphlike Legendrian unfolding £y x at each point is S. P -Legendrian stable.

Remark. If we consider the space of embeddings into hyperbolic space Emb(U, H" (—1)) or the space of spacelike
embeddings into de Sitter space Emb, (U, S7), we have the similar results as the above assertions. Moreover, we have
the universal definitions of spacelike parallels and evolutes in pseudo-spheres, so that the generic classifications are
the same as those of the above case.

10. The casesn =3

In this section we consider the case n = 3. By Theorem 9.2, there exists an open dense subset O C
Emby (U, LC*) such that for any xﬂ € O, the germ of the graphlike Legendrian unfolding £5x at each point is
S.PT-Legendrian stable, where X = T, S. By the local classification theorem on graphlike Legendrian unfoldings by
the S.P"-Legendrian equivalence [10,28], the corresponding graphlike Legendrian unfolding germ £,x (X = T, S)
at any point is S.PT-Legendrian equivalent to a graphlike Legendrian unfoldings whose graphlike generating family
is stably x-S.P*-K-equivalent to one of the following germs:

A 6113+X1611 +x2 +x3 +1,

Aéc : qf+X1q12 + x2q1 + x3 £ ¢,

A4 @)+ x1q) + X247 + x3q1 + 1,

Dy : g3q1 £q; +x14] + X2q1 + X3q2 + 1.

We remark that the germs of types B», B3, C3, B4, C4, F4 appeared in the classification of big fronts in [28]. However,
these germs cannot be realized as graphlike generating families.

On the other hand, by Proposition C.3, the corresponding Lagrangian submanifold germ L(H XV(C(HX)) at
any point is Lagrangian stable for any xﬂ € O. By definition (cf. Appendix C), S.PT-Legendrian equivalence
among graphlike Legendrian unfoldings preserves both the caustics and the perestroikas of wavefronts up to local
diffeomorphism. This equivalence relation clarifies the “local differential topology” of both the caustics and the
perestroikas of wavefronts. On the other hand, by Proposition C.2, the Lagrangian equivalence among Lagrangian
submanifold germs is a stronger equivalence relation than the S.P'-Legendrian equivalence among corresponding
graphlike Legendrian unfoldings. Therefore, it is enough to consider the Lagrangian equivalence for low dimensional
case such as the case n = 3. By the classification theorem of stable Lagrangian submanifold (cf., [1], Page 330,
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cuspidal edge swallowtail pyramid purse

Fig. 1. Generic hyperbolic (resp. de Sitter) evolute germs (n = 3).

Corollary 2), the corresponding Lagrangian submanifold germ L(H*)(C(H®)) at any point is Lagrangian equivalent
to a Lagrangian submanifold germ whose generating family is stably P-R T -equivalent to one of the following germs:

A qf + X191 + x2 + X3,

AT Eqi +xiq] +xq1 + 3,

As: q] +x1q] +X2q7 + 131

Dy : g3q1 43 +x147 + 0201 + X3¢0

Since the total evolute is the caustics of the Lagrangian submanifold L 1(U) in Ay x R4 whose generating families
are HT and HS, we have the following theorem as an application of the above classification and Corollaries 8.9 and
8.14.

Theorem 10.1. For any xi € O and any point (ug, vo) € U x H3(—1) (respectively, (ug, vo) € U x Sf), we have
the following assertions:

(1) The hyperbolic evolute germ (H Epy, vo) (respectively, de Sitter evolute germ (D Epy, vo)) is diffeomorphic to the
fold (A3), the cuspidal edge (A3i), the swallowtail (Ay), the pyramid (D, ) or the purse (Dj).

(2) The osculating elliptic (respectively, hyperbolic) hyperquadrical foliation germ OFT (M, ug) (respectively,
OFS(M,ug)) is diffeomorphic to the foliation germs (Fr,0) with f(q1,92) = F(q1,4q2,0), where
F(q1, q2, x1, x2, X3) is one of the germs of type A», A3i, Ay, Df.

Here, the pictures of the cuspidal edge, the swallowtail, the pyramid and the purse are given in Fig. 1.
We can also draw the pictures of the foliation germs F ¢ in Theorem 10.1, see Fig. 2.
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Appendix A. The theory of Lagrangian singularities

In this section we give a brief review on the theory of Lagrangian singularities due to [1]. We consider the cotangent
bundle 7 : T*R" — R”" over R”. Let (x, p) = (x1,..., Xn, P1, ..., Pn) be the canonical coordinate on 7*R".
Then the canonical symplectic structure on T*R” is given by the canonical two form w = Y }_ dp; A dx;. Let
i : L —> T*R" be an immersion. We say that i is a Lagrangian immersion if dim L = n and i*w = 0. In this case
the critical value of 7 o i is called the caustic of i : L —> T*R" and it is denoted by Cy. The main result in the
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swallowtail pyramid purse

Fig. 2. Generic osculating elliptic (resp. hyperbolic) hyperquadrical foliation germs (n = 3).

theory of Lagrangian singularities is to describe Lagrangian immersion germs by using families of function germs.
Let F : (RF x R",0) —> (R, 0) be an n-parameter unfolding of function germs. We call

aF IF
C(F) = {(q,x) € (R* x R",O)'a—ql(q,x) == @(q,x) =0},

the catastrophe set of F and

32F
Br = {x e (R*,0) ’El(q,x) € C(F) such that rank ( (q,x)) < k}
0gi0q
the bifurcation set of F.
Let 7, : (Rk x R", 0) — (R", 0) be the canonical projection, then we can easily show that the bifurcation set of
F is the critical value set of ,|c(r). We say that F' is a Morse family of functions if the map germ

oF oF
AF = (— —) S (R* x R™, 0) — (RX, 0)
991 9qk
is non-singular, where (g, x) = (q1, ..., Gks X1, ..., Xn) € (R¥ x R”, 0). In this case we have a smooth submanifold

germ C(F) C (RF x R”, 0) and a map germ L(F) : (C(F),0) — T*R" defined by

0x1 0x,

oF oF
L(F)(CLX): X, _(qvx)y“-’_(q’x) .
We can show that L (F) is a Lagrangian immersion. Then we have the following fundamental theorem ([1], page 300).

Proposition A.1. All Lagrangian submanifold germs in T*R" are constructed by the above method.

Under the above notation, we call F a generating family of L(F).
We define an equivalence relation among Lagrangian immersion germs. Let i : (L,x) — (T*R", p) and
i’ (L, x"y — (T*R", p’) be Lagrangian immersion germs. Then we say that i and i" are Lagrangian equivalent if
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there exists a diffeomorphism germ o : (L,x) —> (L’, x’), a symplectic diffeomorphism germ 7 : (T*R", p) —>
(T*R", p’) and a diffeomorphism germ 7 : (R, 7(p)) — (R", n(p’)) suchthatt oi =i’oocandmot =7 o,
where 7 : (T*R", p) — (R", w(p)) is the canonical projection and a symplectic diffeomorphism germ is a
diffeomorphism germ which preserves symplectic structure on 7*R”. In this case the caustic Cy is diffeomorphic
to the caustic C/ by the diffeomorphism germ 7.

A Lagrangian immersion germ into 7*R" at a point is said to be Lagrangian stable if for every map with the
given germ there is a neighborhood in the space of Lagrangian immersions (in the Whitney C*°-topology) and a
neighborhood of the original point such that each Lagrangian immersion belonging to the first neighborhood has in
the second neighborhood a point at which its germ is Lagrangian equivalent to the original germ.

We can interpret the Lagrangian equivalence by using the notion of generating families. Let £ be the ring of
function germs of x = (xq, ..., x,) variables at the origin and 9, = {h € &, | h(0) = 0} be the unique maximal
ideal. Let F, G : (R x R",0) —> (R, 0) be function germs. We say that F and G are P-R™T-equivalent if there
exists a diffeomorphism germ @ : (RF x R", 0) —> (R¥ x R", 0) of the form &(q,x) = (P1(q,x),p(x)) and a
function germ % : (R", 0) — R such that G(q, x) = F(®(q, x)) + h(x). For any Fj : (R x R", 0) —> (R, 0) and
F : (R¥ x R",0) —> (R, 0), F; and F> are said to be stably P-R ™ -equivalent if they become P-R*-equivalent
after the addition to the arguments to ¢; of new arguments ¢/ and to the functions F; of nondegenerate quadratic forms
Q; in the new arguments (i.e., F| + Q1 and F> + Q; are P-R™-equivalent).

Let F : (RF x R", 0) —> (R, 0) be a function germ. We say that F is an R -versal deformation of f = F|pi, )
if

R¥ x {0}, ...

RF x {0}> + ()R,

oF
& =Jf+<—
9 R

X1 " 3x,

where

]f=<—f( )5 —f(q)>

Theorem A.2. Let F : (R¥ x R",0) —> (R, 0) and G : (Rk/ x R",0) —> (R, 0) be Morse families of functions.
Then we have the following:

‘I

(1) L(F) and L(G) are Lagrangian equivalent if and only if F and G are stably P-R ™ -equivalent.
(2) L(F) is a Lagrangian stable if and only if F is a R*-versal deformation of F|R¥ x {0}.

For the proof of the above theorem, see ([1], pages 304 and 325). The following proposition describes the well-
known relationship between bifurcation sets and equivalence among unfoldings of function germs:

Proposition A.3. Let F, G : (R xR",0) —> (R, 0) be function germs. If F and G are P-R™*-equivalent then there
exist a diffeomorphism germ ¢ : (R",0) — (R", 0) such that ¢ (Br) = Bg.

Appendix B. Families of wave fronts and discriminant

In this appendix we give a brief review of the classification theory of both the families of wave fronts and the
discriminants. Almost all results are given by Zakalyukin [28]. However, we give some detailed information here
which might be new. Moreover some equivalence relations presented here have been independently introduced by the
first named author [10] for different purposes from those of Zakalyukin [28].

We consider the projective cotangent bundle 7 : PT*(R"” x R) — R” x Rover R* x R. Let IT : TPT*(R" x
R) — PT*(R" x R) be the tangent bundle over PT*(R" x R) and dmw : TPT*(R" x R) — T(R" x R) the
differential map of 7.

Forany X € TPT*(R" x R), there exists an element o € T* (R” x R) such that I7 (X) = [«]. For an element
V € T,y (R" x R), the property a(V) = 0 does not depend on the choice of representative of the class [«]. Thus we
can define the canonical contact structure on PT*(R" x R) by

={X e TPT*(R" x R)|[II(X)(dm (X)) = 0}



S. Izumiya, M. Takahashi / Journal of Geometry and Physics 57 (2007) 1569-1600 1595
Because of the trivialization PT*(R"” x R) = (R" x R) x P(R" x R)*, we call

((-xlv'-'vxnvt)’[gl:"':S}’l:‘[])

a homogeneous coordinate, where [§1 : --- : &, : 1] is the homogeneous coordinate of the dual projective
space P(R" x R)*. It is easy to show that X € K, y) ¢z if and only if Z:'l:l wi& + At = 0, where
dr(X) = 37 pigg + 2 g

We remark that PT*(R” x R) is a fibrewise compactification of the 1-jet space J ! (R”, R) as follows. We consider
an affine open subset U; = {((x, 1), [§ : T])|T # 0} of PT*(R" x R). For any ((x, 1), [§ : 7]) € U, we have

&1 §
(@unth%&2~ﬂ&2ﬂﬁ=Omwnwmﬂ{—?2~%—£1—l,
so that we may adopt the corresponding affine coordinates ((x1, ..., Xn, t), (p1, ..., Pn)), Where p; = —§;/t.On U,

we can easily show that 61 (0) = K|U;, where 6 = dr — Z?:l pidx;. This means that U; may be identified with the
1-jet space J ! (R", R). We call the above coordinate a system of canonical coordinates. Throughout the remainder of
this paper, we use this identification so that we have J 1(R”, R) Cc PT*(R" x R).

A submanifold i : L C PT*(R" x R) is a Legendrian submanifold if dim L = n and di,(T,L) C K;(p) for any
p € L. We say that a point p € L is a Legendrian singular point if rank d(7 o i), < n. We also say that a point
p € L is a space-singular point if rankd(71 o 7 0 i), < n, where 1 : R" x R — R" is the canonical projection.
By definition, if a point p € L is a Legendrian singular point, then it is a space-singular point. If i : L C J'(R", R),
the converse assertion also holds as the following lemma shows:

Lemma B.1. Leti : L C PT*(R" x R) be a Legendrian submanifold with L C J'(R", R). Then a point p € L is a
Legendrian singular point if and only if it is a space-singular point.

Proof. Let p € L be a space-singular point. Then there exists a non-zero tangent vector v € 7,L such that
d(mwy o oi)p(v) = 0. Under the canonical coordinate of J I(R", R), we have

0= Y a e+ i
i(v) = o — — L

= ' 0x; ot = Vi apj
for some real numbers «;, 8, y;. By the assumption, we have o; = 0 (i = 1,...,n). Since i is a Legendrian
immersion, we have 0 = 6(i(v)) = B — Y/, vic; = B. It follows that

dr 0i(v) Z o 182 0
oi(v) = o — — =0.
P 0x; ot

Therefore, p € L is a Legendrian singular point.  [J

We also say that a point p € L is a time-singular point if rankd (73 o w 0 i), < 1, where 13 : R” x R — Ris
the canonical projection. Then we have the following lemma.

Lemma B.2. Leti : L C PT*(R" x R) be a Legendrian submanifold without Legendrian singular points. If p € L
is a space-singular point, then p is not a time-singular point (i.e., wy o 7w o i is a submersion at p), Moreover, under
the same assumption, i|(my o7 o )~ Ye) is an (n — 1)-dimensional isotropic immersion at p, where ¢ = myom oi(p)
such that rank d (st o i|(mp 0o © i)_l(c))p =n—1(ie,moil(momo )~ Y(c) is an immersion at p)-

Proof. By the assumption, 7 o i is an immersion. For any v € T,L, there exist X, € Ty.i(p)(R" x {0}) and
Yy € Troi(py({0} x R) such that d(w 07),(v) = Xy + Y,. If rankd(m2 o 0i), = 0, then d(x 0 i),(v) = X,
for any v € T, L. Since p is a space-singular point, there exists a non-zero tangent vector v € T, L such that X, = 0,
so that d(m o), (v) = 0. This contradicts the fact that 77 o i is an immersion.

Since i is a Legendrian immersion such that 7 o i is an immersion, i|(3 o 7 0 i)~ !(c) is an (n — 1)-dimensional
isotropic immersion at p and w o i|(mp 0w 0 § y~1(c) is also an immersion at p. O



1596 S. Izumiya, M. Takahashi / Journal of Geometry and Physics 57 (2007) 1569-1600

For a Legendrian submanifold i : L C PT*(R" x R), w o i(L) = W(L) is called a big wave front. We have a
family of small fronts:

Wi(L) = 71 (m; () NW(L) (1 € R).

In this sense we call L a big Legendrian submanifold. The discriminant of the family W; (L) is defined as the image of
singular points of 71|W(L). In the general case, the discriminant consists of three components: the caustics Cy, the
projection of the set of singular points of W (L), the Maxwell stratum M|, the projection of self intersection points
of W(L); and also of the envelope of the family of small fronts A. By definition, Cy, U A is the projection of space-
singular points. By Lemma B.1,ifi : L C J 1 (R", R), then the discriminant is C;, U M. Moreover, by Lemma B.2,
ifi : L C PT*(R" x R) is not Legendrian singular at any point, then the discriminant is My U A.

We now consider equivalence relations among Legendrian submanifolds which preserve both of qualitative pictures
of bifurcations of families of small fronts and discriminants.

Leti : (L, po) C (PT*(R" x R), po) and i’ : (L', py) C (PT*(R" x R), p() be Legendrian submanifold
germs. We say that i and i’ are space-time Legendrian equivalent if there exist diffeomorphism germs &
R" xR, 7(po)) — (R" x R, m(p)) of the form (x, 1) = (¢1(x), ¢2(t)) and ¥ : (L, po) —> (L', p;) such that
Doi=io W, where d: (PT*(R" x R), po) —> (PT*(R" x R), py) is the unique contact diffeomorphism germ
with 7m0 @ = d o 7.

This equivalence relation is the most natural equivalence relation among Legendrian immersion germs for our
purpose. It might be, however, quite hard to study because it leads the equivalence relation among divergent diagrams
R" «— R” x R — R. In order to avoid the difficulty, we introduce rather a strong equivalence relation as
follows. We say that i and i" are strictly parametrized Legendrian equivalent (or briefly S.P-Legendrian equivalent)
if there exist diffeomorphism germs @ : (R" x R, 7(pg)) — R" x R, n(p(/))) of the form @(x,t) = (¢1(x), 1)
and ¥ : (L, pp) — (L, p(/)) such that  oi = i o . Although this equivalence relation is rather easier to
handle, functional modulus in the generic classification might appear even in low dimensional case. Therefore, we
introduce another equivalence relation which ignore the function moduli as follows. We say that i and i’ are strictly
parametrized™ Legendrian equivalent (or briefly S.P¥-Legendrian equivalent) if there exist diffeomorphism germs
?: (R" xR, m(po)) — (R" x R, w(pg)) of the form D(x,1) = (¢1(x), 1 + a(x)) and ¥ : (L, po) —> (L', py)
such that doi =i o .

The S.P'-Legendrian equivalence has been introduced in [10,11,25] for the study of completely integrable
holonomic systems of first order partial differential equations. It has also been independently studied by
Zakalyukin [28] called the strongly space-equivalence. We remark that the above equivalence relation among big
Legendrian submanifold germs preserve both the diffeomorphism types of bifurcations for families of small fronts
and caustics.

We study the S.P'-Legendrian equivalence by using the notion of generating families of Legendrian submanifold
germs.

For any Legendrian submanifold germ i : (L, pg) C (PT*(R" x R), po), there exists a generating family of
i by the Arnol’d—Zakalyukin’s theory [1]. Let F : (R¥ x (R" x R),0) —> (R, 0) be a function germ such that
(F,drF) : (R x R" x R, 0) — (R x R¥, 0) is non-singular, where

oF IF
dZF(QaX,t)Z a_ql(q’x’t)’...’@(q’x’t) .

In this case we call F a big Morse family of hypersurfaces. Then X\ (F) = (F, d>F)~1(0) is a smooth n-manifold
germ. Define

Lr:(Xe(F),0) — PT*(R" x R)

by

or or
Lr(q,x,t)= (x,t, [—8 (q,x,1): —(q,x,t)D,
X at
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where

L gxn: | = | g (g o gox)
ax 4 © ot AN L axg AR " 3x, 4 © ot KA '

Itis easy to show that £ (X, (F)) is a Legendrian submanifold germ. By the main theorem of Arnol’d—Zakalyukin [1],
we can show the following proposition:

Proposition B.3. All big Legendrian submanifold germs are constructed by the above method.

Let F : (R x (R” x R),0) —> (R, 0) be a big Morse family of hypersurfaces. We call F a generating family
of Lr. We now consider ambiguity of the choice of generating families. Let F, G : (RF x (R" x R),0) — (R, 0)
be big Morse families. We say that F and G are strictly R-equivalent if there exists a diffeomorphism germ
@ : (RF x (R" x R), 0) —> (R¥ x (R"” x R), 0) of the form (g, x, 1) = (¢(g, x, 1), x,t) such that F o & = G. If
we carefully read proofs of Lemmas 1 and 2 in ([1], page 307), we can understand the following assertion.

Proposition B.4. Let F, G : (R* x (R" x R), 0) —> (R, 0) be big Morse families of hypersurfaces such that
Image Lr = Image L and rank H(F|R* x {0})(0) = rank H(G|R* x {0})(0) = 0,
where H(f) is the Hessian matrix of f. Then F and G are strictly R-equivalent.

Let f, g : (R¥ x R, 0) — (R, 0) be function germs. We say that f and g are S.P-K-equivalent (or strictly P-K-
equivalent) if there exists a diffeomorphism germ @ : (RF x R, 0) —> (R x R, 0) of the form D(q,t) =(p(g,1),1)
such that (f o @)g((m = (8)eyn-

Let F,G : (RF x (R” x R),0) —> (R, 0) be function germs. We say that F and G are x-S.Pt-K-equivalent
if there exists a diffeomorphism germ @ : (R* x (R" x R),0) —> (RF x (R" x R), 0) of the form ¥(q,x,1) =
(d(q,x,1), Pp2(x), t+a(x)) such that (F o (p)g(q‘m) = (G)g(qw), where x = (xy, ..., x,) is the canonical coordinate
of (R", 0).

The notion of §.PT-K-versal deformation plays an important role for our purpose. We define the extended tangent
space of f : (R* x R, 0) —> (R, 0) relative to S.PT-K by

oy = (2L o
T,(S.PH-K)(f) = <8q1 . 3Qk7f>g(q,,) +<a; >R.

Then we say that a deformation F of f = Flpk, xR i infinitesimally S .PT-K-versal if it satisfies

oF
Eqn =TS PT-K)(f) + <—a
X1

oF
RF x {0} xR,...,—‘Rk x {0}><]R> .
0xy, R
We simply say that F is a S.P+-K-versal deformation of f if it is infinitesimally S.PT-K-versal.
We remark that F is S.P*-K-versal, then 7 is upper bound for
dimg Eg.1)/ Te(S.PT-K)(f).

Moreover, we have the following very important property as a consequence of the versality theorem [5].

Proposition B.5. (1) Suppose that F, G be n-parameter S.PY-K-versal deformations of f. Then F and G are
x-S.PY-K-equivalent.

(2) Let &1(q.1),...,8,(q,t) be generators of the R-vector space &y 1)/ Te (S.PT-K)(f), then any n-parameter
S.P*-K-versal deformations are x-S.P " -K-equivalent to

F(qvxvt) = f(qvt) +in$i(q’t)'

i=1

Theorem B.6. Let F : (R* x (R" xR), 0) —> (R, 0) and G : (Rk/ x (R" xR), 0) — (R, 0) be big Morse families
of hypersurfaces. Then
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(1) Lf and L are S.P-Legendrian equivalent if and only if F and G are stably x-S.P*-K-equivalent.
(2) Lr isa S.P*-Legendrian stable if and only if F is a S.PT-K-versal deformation of f = F|R* x {0} x R.

Here, F and G are said to be stably x-S.P"-K-equivalent if they become x-S.PT-K-equivalent after the addition
of non-degenerate quadratic forms in additional variables q'.

We have another characterization of the S.P™-K-versality for families of function germs. For any function germ
F : (R* x (R" x R), 0) —> (R, 0), we have the r-jet extension

JIF : (RY x (R" x R),0) — J'(RF x R, R)

defined by j{ F(q,x,t) = j"Fx(q,t), where F\(q,t) = F(q, x, t). On the other hand, we have (S.P-K)"-orbits in
J"(k + 1, 1), where we have the canonical decomposition J'RF x R,R) = (R¥ x R) x R x J"(k + 1, 1). For any
z=J"f(0) e J"(k+ 1, 1), we define that

(8.P-K) (2) = R} x R) x {0} x (8.P-K) (2),
where (S.P-K)"(z) is the (S.P-K)"-orbit through z.

Proposition B.7. Suppose that f = F|R* x {0} x R is r-determined relative to S.P-K (for the definition, see [8]).
The following conditions are equivalent:

(1) Fisa S.PT-K-versal deformation of f.
(2) j{ F is transverse to (S.P-K)" (z), where z = j" f(0).

Since the big Legendrian submanifold germi : (L, pg) C (PT*(R" xR), po) is uniquely determined on the regular
part of the big wave front W (L), we have the following simple but significant property of Legendrian submanifold
germs:

Proposition B.8. Ler i : (L, pg) C (PT*(R" x R), po) and i’ : (L', po) C (PT*(R" x R), po) be big Legendrian
submanifold germs such that regular sets of 7 o i, o i’ are dense respectively. Then (L, po) = (L', po) if and only
if (W(L), w(po)) = (W(L"), 7(po)).

This result has been firstly pointed out by Zakalyukin [27]. The assumption in the above proposition is a generic
condition for i, i’. Specially, if i and i’ are S.PT-Legendrian stable, then these satisfy the assumption. Concerning
the discriminant and the bifurcation of small fronts, we define the following equivalence relation among big wave
front germs. Let i : (L, po) C (PT*(R" x R), po) and i’ : (L', pj) C (PT*(R" x R), p;) be Legendrian
submanifold germs. We say that W (L) and W(L') are S.P™"-diffeomorphic if there exists diffeomorphism germ
& :(R" xR, w(pg)) — (R" xR, n(p(’))) of the form @(x, 1) = (¢1(x), t + a(x)) such that (W (L)) = W(L").
By Proposition B.8, we have the following proposition.

Proposition B.9. Let i : (L, po) C (PT*(R" x R), po) and i’ : (L', pj) C (PT*(R" x R), p(,) be big Legendrian
submanifold germs such that regular sets of w o i, w o i’ are dense respectively. Then i and i’ are S.PT-Legendrian
equivalent if and only if (W (L), w(po)) and (W (L"), n(p(’))) are S.PT-diffeomorphic.

Appendix C. Graphlike Legendrian unfoldings

In this appendix, we consider a special class of Legendrian submanifolds in J!(R", R) c PT*(R" x R). We
say that a Legendrian submanifold i : L C J'(R",R) is a graphlike Legendrian unfolding if 7> o w o i is a
submersion (i.e., time-nonsingular) at any point p € L. The notion of graphlike Legendrian unfoldings has been
introduced by the first named author [9] in order to describe the perestroikas of wave fronts given as the level
surfaces of the solution for the eikonal equation given by a general Hamiltonian function. Since L is a Legendrian
submanifold in J'(R”, R), it has a big generating family at least locally. In this case it has a special form as follows.
Let F : (RF x (R” x R), 0) —> (R, 0) be a big Morse family of hypersurfaces. We say that F is a graphlike Morse
family of hypersurfaces if (0F /0t)(0) # 0. It is easy to show that the corresponding big Legendrian submanifold
germ is a graphlike Legendrian unfolding. Of course all graphlike Legendrian unfolding germs can be constructed
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by the above way. In this case we say that F is a graphlike generating family of L (X (F)). However, we can
reduce the more strict form of graphlike generating families. Let F be a graphlike Morse family of hypersurfaces.
By the implicit function theorem, there exists a Morse family of functions F : (R¥ x R",0) — (R, 0) such that
(F(q,x,t))eq,x,n = (F(q,Xx) —t)g(g,x,n- Therefore F(g, x) —t is a graphlike generating family of £z (X (F)). In
this case

Su(F) ={(g.x, F(g,x)) € R x (R" xR),0) | (¢,x) € C(F))
and
Lr(q,x, F(q,x)) = (L(F)(g,x), F(g,x)) € J'(R",R) = T*R" x R.

Define amap £f : C(F) — J'(R",R) by £¢(q, x) = (¢, x, F(q, x), (3F/3x)(q, x)), then we have £z (C(F)) =
Lr(Xu(F)). Wecall W(Lr) = n(Lr(C(F))) the wave fronts of graphlike Legendrian unfolding £ . We simply call
F a generating family of the graphlike Legendrian unfolding £r. For any Morse family of function F', we denote that
F(q, x,t) = F(q, x)—t.Since F(q, x, t) is a big Morse family, we can use all the definitions of equivalence relations
given in Appendix B. Moreover we can translate the propositions and theorems into corresponding assertions in terms
of graphlike Legendrian unfoldings. We denote that f(g,t) = f(g) — ¢ for any f € 9. Then we can represent the
extended tangent space of f : (RF x R, 0) —> (R, 0) relative to S.P*-K by

af af

T.(S.PY-K)(f) = <—(q), s (), fg) — t> + (DR.
q1 0qx Ean
For a deformation F : (R x R",0) — (R, 0) of f, F is S.PT-K-versal deformation of f if and only if

— or
Eqny = T(S.PT-K)(f) + <_8
x|

oF
R s — R :
X (0], 5 [RE < 0))

Moreover, we have the following very important property as a consequence of the versality theorem [5].

Theorem C.1. Let F : (Rk xR", 0) — (R,0) and G : (Rk/ x R", 0) — (R, 0) be Morse families of functions.
Then

(1) £ and £ are S.PT-Legendrian equivalent 'if and only if F and G are stably x-S.P*-K-equivalent.
(2) £F is S.PT-Legendrian stable if and only if F is an S.P*-K-versal deformation of f = F|RF x {0}.

By Proposition A.1, any Lagrangian submanifold germ in 7*R" is given by L(F)(C(F)) for a Morse family of
functions F. Let F, G be Morse families of functions, then L(F)(C(F)) and L(G)(C(G)) are Lagrangian equivalent
if and only if F and G are stably P-R*-equivalent (cf. Theorem A.2). By definition, if F and G are stably P-R*-
equivalent, then F and G are stably x-S.P*-/C-equivalent. Therefore we have the following proposition.

Proposition C.2. If L(F)(C(F)) and L(G)(C(G)) are Lagrangian equivalent, then £r(C(F)) and £5(C(G)) are
S.P™T-Legendrian equivalent.

Remark. The above proposition asserts that the Lagrangian equivalence is stronger equivalence relation than the
S.P*-Legendrian equivalence. The S.PT-Legendrian equivalence relation among graphlike Legendrian unfoldings
preserves both the diffeomorphism types of bifurcations for families of small fronts and caustics. On the other hand,
if we observe the real caustics of rays, we cannot observe the structure of wave front propagations. In this sense, there
are hidden structures behind the picture of real caustics (cf. Appendix B). By the above proposition, the Lagrangian
equivalence preserve not only the diffeomorphism type of caustics but also the hidden geometric structure of wave
front propagations.

Moreover, suppose that F is a §.PT-K-versal deformation of f. By definition, we have

R¥ x {0}, ...

F IRk « {0}>

— |oF
Eq.ny = Te(S-PT-K)(f) + <— '3y

0x1

R

The proof of the following proposition is given in [19].
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Proposition C.3 (/19, Proposition 4.1]). Let F : (RF x R",0) —> (R, 0) be a Morse family of functions. If £F is
S.PT-Legendrian stable, then L(F) is Lagrangian stable.
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